65 research outputs found

    Talking about living and dying with the oldest old: public involvement in a study on end of life care in care homes.

    Get PDF
    BACKGROUND: Public involvement in research on sensitive subjects, such as death and dying, can help to ensure that questions are framed to reflect the interests of their peers, develop a shared understanding of issues raised, and moderate the often unequal power relationship between researcher and participant. This paper describes the contribution and impact of older members of a Public Involvement in Research group (PIRg) to a study on living and dying in care homes. METHODS: A longitudinal study, with a mixed method approach, its aims were to capture key experiences, events and change over one year, of older people resident in participating care homes in the East of England. Residents were interviewed up to three times and their case notes were reviewed four times over the year. Interviews were semi structured, and recorded. Four members of a Public Involvement in Research group (PIRg) contributed to preliminary discussions about the research and three were involved with many of the subsequent stages of the research process including the facilitation of discussion groups with residents. RESULTS: There were three areas where the involvement of the Public Involvement in Research group (PIRg) positively influenced the study process. These were recruitment, governance and safeguarding, and in collaboration with the residents in the care homes, the discussion and interpretation of emergent findings. PIRg members were of similar age to the residents and their involvement provided different and often more reflective insights of the significance of the findings for the participants. There were examples where decision making about the range of PIRg participation was not always negotiable, and this raised issues about power relationships within the team. Nevertheless, PIRg members expressed personal benefit and satisfaction through participating in the research and a commitment to continue to support research with this older age group. CONCLUSIONS: The contribution of the PIRg supported a successful recruitment process that exceeded response rates of other studies in care homes. It safeguarded residents during the conduct of research on a sensitive topic and helped in validating the interview data gathered by the researchers through the discussion groups facilitated by the PIRg. There were power differentials that persisted and affected PIRg participation. The study has showed the value of developing job descriptions and a more formal means of setting out respective expectations. Future research may wish to elicit the views of focal participants in such studies about the mediation of research by public involvement in research.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Rare coding variants in ten genes confer substantial risk for schizophrenia

    Get PDF
    Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, PPeer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk

    The genetics of the mood disorder spectrum:genome-wide association analyses of over 185,000 cases and 439,000 controls

    Get PDF
    Background Mood disorders (including major depressive disorder and bipolar disorder) affect 10-20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Despite their diagnostic distinction, multiple approaches have shown considerable sharing of risk factors across the mood disorders. Methods To clarify their shared molecular genetic basis, and to highlight disorder-specific associations, we meta-analysed data from the latest Psychiatric Genomics Consortium (PGC) genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; non-overlapping N = 609,424). Results Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More genome-wide significant loci from the PGC analysis of major depression than bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell-types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment – positive in bipolar disorder but negative in major depressive disorder. Conclusions The mood disorders share several genetic associations, and can be combined effectively to increase variant discovery. However, we demonstrate several differences between these disorders. Analysing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum

    Genetic Overlap Between Alzheimer’s Disease and Bipolar Disorder Implicates the MARK2 and VAC14 Genes

    Get PDF
    Background: Alzheimer's disease (AD) and bipolar disorder (BIP) are complex traits influenced by numerous common genetic variants, most of which remain to be detected. Clinical and epidemiological evidence suggest that AD and BIP are related. However, it is not established if this relation is of genetic origin. Here, we applied statistical methods based on the conditional false discovery rate (FDR) framework to detect genetic overlap between AD and BIP and utilized this overlap to increase the power to identify common genetic variants associated with either or both traits. Methods: We obtained genome wide association studies data from the International Genomics of Alzheimer's Project part 1 (17,008 AD cases and 37,154 controls) and the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases and 31,358 controls). We used conditional QQ-plots to assess overlap in common genetic variants between AD and BIP. We exploited the genetic overlap to re-rank test-statistics for AD and BIP and improve detection of genetic variants using the conditional FDR framework. Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP. Using conditional FDR, we identified one novel genomic locus associated with AD, and nine novel loci associated with BIP. Further, we identified two novel loci jointly associated with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional FDR=0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476, conjunctional FDR=0.022, opposite direction of effect). Conclusions: We found polygenic overlap between AD and BIP and identified novel loci for each trait and two jointly associated loci. Further studies should examine if the shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared and distinct features of AD and BIP

    Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders.

    Get PDF
    Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development

    Slippers

    Get PDF

    An Inconsistency-based Approach for Sensing Assessment in Unknown Environments

    Get PDF
    While exploring an unknown environment, an intelligent agent has only its sensors to guide its actions. Each sensor\u27s ability to provide accurate information depends on the environment\u27s characteristics. If the agent does not know these characteristics, how can it determine which sensors to rely on? This problem is exacerbated by sensing anomalies: cases where sensor(s) are working but the readings lead to an incorrect interpretation of the environment, e.g. laser sensors cannot detect glass. This work addresses the following research question: Can an inconsistency-based sensing accuracy indicator, which relies solely on fused sensor readings, be used to detect and characterize sensing anomalies in unknown environments? A novel inconsistency-based approach was investigated for sensing anomaly detection and characterization by a mobile robot using range sensing for mapping. Based on the hypothesis that sensing anomalies manifest as inconsistent sensor readings, the approach employed Dempster-Shafer theory and six metrics from the evidential literature to measure the magnitude of inconsistency. These were applied directly to fused sensor data with a threshold, forming an indicator, used to distinguish minor noise from anomalous readings. Experiments with real sensor data from four indoor and two outdoor environments showed that three of the six evidential inconsistency metrics can partially address the issue of noticing sensing anomalies in unknown environments. Polaroid sonar sensors, SICK laser range finders, and a Canesta range camera were used. Despite extensive training in known environments, the indicators could not reliably detect sensing anomalies, i.e. distinguish them from ordinary noise. However, sensing accuracy could be estimated (correlations with sensor error exceeded 0.8) and regions with suspect readings could be isolated. Trained indicators failed to rank sensors, but improved map quality by resetting suspect regions (up to 57.65%) or guiding sensor selection (up to 75.86%). This work contributes to the robotics and uncertainty in artificial intelligence communities by establishing the use of evidential metrics for adapting a single sensor or identifying the most accurate sensor to optimize the sensing accuracy in unknown environments. Future applications could enable intelligent systems to switch information sources to optimize mission performance and identify the reliability of sources for different environments
    corecore