59 research outputs found

    Identifying earthworms (Oligochaeta, Megadrili) of the Southern Kuril Islands using DNA barcodes

    Get PDF
    Identificación de las lombrices (Oligochaeta, Megadrili) del sur de las Islas Kuriles utilizando códigos de barras de ADN Las Islas Kuriles forman un archipiélago volcánico situado entre Hokkaido y Kamchatka. En este estudio analizamos las lombrices de tres de las Islas Kuriles meridionales: Kunashir, Shikotan y Yuri, utilizando el análisis morfológico y los códigos de barras de ADN. Nuestros resultados ponen de relieve el potencial de los códigos de barras de ADN para estudiar las lombrices: si bien en estudios anteriores solo se habían registrado seis especies y subespecies de lombriz en las Islas Kuriles meridionales, nosotros detectamos 15 grupos genéticos. Seis de ellos son especies cosmopolitas europeas; seis, especies asiáticas; y tres, sin determinar. A pesar de que no se encontraron lombrices europeas en Yuri, que está deshabitada desde la Segunda Guerra Mundial, estas especies dominaron en las islas Kunashir y Shikotan, que son más grandes y están habitadas, lo que sugiere que se trata de especies invasoras recientes. De las seis especies asiáticas, cinco tenían secuencias cox1 idénticas o muy emparentadas con las secuencias publicadas encontradas en el continente o en las islas del Japón y, por tanto, se trata de invasoras recientes.The Kuril Islands are a volcanic archipelago located between Hokkaido and Kamchatka. In this study we investigated earthworm fauna of three of the Southern Kuril Islands, Kunashir, Shikotan, and Yuri, using both morphological analysis and DNA barcoding. Our results highlight the potential of DNA barcoding for studying earthworm fauna: while previous studies reported only six earthworm species and subspecies on the Southern Kurils, we detected 15 genetic clusters. Six of them correspond to European cosmopolites; six, to Asian species, and three, to unidentified species. While no European earthworms were found on Yuri that is uninhabited since WWII, they dominated on larger and inhabited Kunashir and Shikotan, suggesting that they are recent invaders. Of the six Asian species, five had cox1 sequences identical or very closely related to published sequences from the mainland or the Japanese islands and thus are recent invaders.Identificación de las lombrices (Oligochaeta, Megadrili) del sur de las Islas Kuriles utilizando códigos de barras de ADN Las Islas Kuriles forman un archipiélago volcánico situado entre Hokkaido y Kamchatka. En este estudio analizamos las lombrices de tres de las Islas Kuriles meridionales: Kunashir, Shikotan y Yuri, utilizando el análisis morfológico y los códigos de barras de ADN. Nuestros resultados ponen de relieve el potencial de los códigos de barras de ADN para estudiar las lombrices: si bien en estudios anteriores solo se habían registrado seis especies y subespecies de lombriz en las Islas Kuriles meridionales, nosotros detectamos 15 grupos genéticos. Seis de ellos son especies cosmopolitas europeas; seis, especies asiáticas; y tres, sin determinar. A pesar de que no se encontraron lombrices europeas en Yuri, que está deshabitada desde la Segunda Guerra Mundial, estas especies dominaron en las islas Kunashir y Shikotan, que son más grandes y están habitadas, lo que sugiere que se trata de especies invasoras recientes. De las seis especies asiáticas, cinco tenían secuencias cox1 idénticas o muy emparentadas con las secuencias publicadas encontradas en el continente o en las islas del Japón y, por tanto, se trata de invasoras recientes

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe

    Global monitoring of soil animal communities using a common methodology.

    Get PDF
    Here we introduce the Soil BON Foodweb Team, a cross-continental collaborative network that aims to monitor soil animal communities and food webs using consistent methodology at a global scale. Soil animals support vital soil processes via soil structure modification, consumption of dead organic matter, and interactions with microbial and plant communities. Soil animal effects on ecosystem functions have been demonstrated by correlative analyses as well as in laboratory and field experiments, but these studies typically focus on selected animal groups or species at one or few sites with limited variation in environmental conditions. The lack of comprehensive harmonised large-scale soil animal community data including microfauna, mesofauna, and macrofauna, in conjunction with related soil functions, microbial communities, and vegetation, limits our understanding of biological interactions in soil systems and how these interactions affect ecosystem functioning. To provide such data, the Soil BON Foodweb Team invites researchers worldwide to use a common methodology to address six long-term goals: (1) to collect globally representative harmonised data on soil micro-, meso-, and macrofauna communities, (2) to describe key environmental drivers of soil animal communities and food webs, (3) to assess the efficiency of conservation approaches for the protection of soil animal communities, (4) to describe soil food webs and their association with soil functioning globally, (5) to establish a global research network for soil biodiversity monitoring and collaborative projects in related topics, (6) to reinforce local collaboration networks and expertise and support capacity building for soil animal research around the world. In this paper, we describe the vision of the global research network and the common sampling protocol to assess soil animal communities and advocate for the use of standard methodologies across observational and experimental soil animal studies. We will use this protocol to conduct soil animal assessments and reconstruct soil food webs at sites associated with the global soil biodiversity monitoring network, Soil BON, allowing us to assess linkages among soil biodiversity, vegetation, soil physico-chemical properties, climate, and ecosystem functions. In the present paper, we call for researchers especially from countries and ecoregions that remain underrepresented in the majority of soil biodiversity assessments to join us. Together we will be able to provide science-based evidence to support soil biodiversity conservation and functioning of terrestrial ecosystems

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    14 p.Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change

    Contribution for the derivation of a soil screening value (SSV) for uranium, using a natural reference soil

    Get PDF
    In order to regulate the management of contaminated land, many countries have been deriving soil screening values (SSV). However, the ecotoxicological data available for uranium is still insufficient and incapable to generate SSVs for European soils. In this sense, and so as to make up for this shortcoming, a battery of ecotoxicological assays focusing on soil functions and organisms, and a wide range of endpoints was carried out, using a natural soil artificially spiked with uranium. In terrestrial ecotoxicology, it is widely recognized that soils have different properties that can influence the bioavailability and the toxicity of chemicals. In this context, SSVs derived for artificial soils or for other types of natural soils, may lead to unfeasible environmental risk assessment. Hence, the use of natural regional representative soils is of great importance in the derivation of SSVs. A Portuguese natural reference soil PTRS1, from a granitic region, was thereby applied as test substrate. This study allowed the determination of NOEC, LOEC, EC20 and EC50 values for uranium. Dehydrogenase and urease enzymes displayed the lowest values (34.9 and ,134.5 mg U Kg, respectively). Eisenia andrei and Enchytraeus crypticus revealed to be more sensitive to uranium than Folsomia candida. EC50 values of 631.00, 518.65 and 851.64 mg U Kg were recorded for the three species, respectively. Concerning plants, only Lactuca sativa was affected by U at concentrations up to 1000 mg U kg1. The outcomes of the study may in part be constrained by physical and chemical characteristics of soils, hence contributing to the discrepancy between the toxicity data generated in this study and that available in the literature. Following the assessment factor method, a predicted no effect concentration (PNEC) value of 15.5 mg kg21dw was obtained for U. This PNEC value is proposed as a SSV for soils similar to the PTRS1

    Spatial Distribution of Soil Macroinvertebrates in a Dry Steppe (South-Eastern Siberia, Russia)

    Get PDF
    Soil macroinvertebrates are important components of ecosystems. They play a key role in decomposition processes and turnover of the most of elements. Adequate estimation of abundance and biomass of these animals is fundamental for understanding their input in steppe ecosystems. Asian steppes of Russia are poorly studied. Therefore, baseline soil invertebrate composition, abundance and rules of distribution were estimated
    corecore