1,720 research outputs found

    Electrochemical probing of selective haemoglobin binding in hydrogel-based molecularly imprinted polymers

    Get PDF
    An electrochemical method has been developed for the probing of hydrogel-based molecularly imprinted polymers (HydroMIPs) on the surface of a glassy carbon electrode. HydroMIPs designed for bovine haemoglobin selectivity were electrochemically characterised and their rebinding properties were monitored using cyclic voltammetry. The electrochemical reduction of bovine oxyhaemoglobin (BHb) in solution was observed to occur at ?0.460 V vs (Ag/AgCl) in 150 mM phosphate buffer solution (PBS). When the protein was selectively bound to the MIP, the electrochemical reduction of oxyhaemoglobin could be observed at a similar peak potential of ?0.480 V vs (Ag/AgCl). When analysing the non-imprinted control polymer (NIP) interfaced at the electrode, which contained no protein, the peak reduction potential corresponded to that observed for dissolved oxygen in solution (?0.65 V vs (Ag/AgCl)). MIP and NIP (in the absence of protein) were interfaced at the electrode and protein allowed to diffuse through the polymers from the bulk solution end to the electrode. It was observed that whereas NIP exhibited a protein response within 10 min of protein exposure, up to 45 min of exposure time was required in the case of the MIP before a protein response could be obtained. Our results suggest that due to the selective nature of the MIP, BHb arrival at the electrode via diffusion is delayed by the MIP due to attractive selective interactions with exposed cavities, but not the NIP which is devoid of selective cavities

    Synthetic RNA modules for fine-tuning gene expression levels in yeast by modulating RNase III activity

    Get PDF
    The design of synthetic gene networks requires an extensive genetic toolbox to control the activities and levels of protein components to achieve desired cellular functions. Recently, a novel class of RNA-based control modules, which act through post-transcriptional processing of transcripts by directed RNase III (Rnt1p) cleavage, were shown to provide predictable control over gene expression and unique properties for manipulating biological networks. Here, we increase the regulatory range of the Rnt1p control elements, by modifying a critical region for enzyme binding to its hairpin substrates, the binding stability box (BSB). We used a high throughput, cell-based selection strategy to screen a BSB library for sequences that exhibit low fluorescence and thus high Rnt1p processing efficiencies. Sixteen unique BSBs were identified that cover a range of protein expression levels, due to the ability of the sequences to affect the hairpin cleavage rate and to form active cleavable complexes with Rnt1p. We further demonstrated that the activity of synthetic Rnt1p hairpins can be rationally programmed by combining the synthetic BSBs with a set of sequences located within a different region of the hairpin that directly modulate cleavage rates, providing a modular assembly strategy for this class of RNA-based control elements

    Conformational transferability of the sulfenyl carbonyl group -SC(O)- in cyclic thioesters

    Get PDF
    The molecular and crystal structure of two dithiolactones (formally dimers of ε-caprothiolactone and ω-hexadecathiolactone) have been determined by X-ray diffraction at low temperature, revealing that the thioester group is planar with a synperiplanar orientation of the C═O double bond with respect to the S—C single bond. This conformational behavior is in contrast to that found for the smaller cyclic members of this family, where the antiperiplanar conformation is enforced. It is hypothesized that strain effects play a major role for the energy balance in the conformational preference. In this context, the molecular, vibrational (infrared and Raman), and electronic properties of ε-caprothiolactone have also been analyzed by using a combined experimental, including gas-phase helium I photoelectron spectroscopy, and computational approach.Fil: Dugarte Jiménez, Nahir Yerely. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Química Inorgánica "Dr. Pedro J. Aymonino"; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; ArgentinaFil: Erben, Mauricio Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Química Inorgánica "Dr. Pedro J. Aymonino"; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; ArgentinaFil: Hey Hawkins, Evamarie. Universitat Leipzig; AlemaniaFil: Lönnecke, Peter. Universitat Leipzig; AlemaniaFil: Stadlbauer, Sven. Universitat Leipzig; AlemaniaFil: Ge, Mao Fa. Chinese Academy of Sciences; República de ChinaFil: Li, Yao. Chinese Academy of Sciences; República de ChinaFil: Piro, Oscar Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Echeverría, Gustavo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Della Védova, Carlos Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Química Inorgánica "Dr. Pedro J. Aymonino"; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química; Argentin

    The Effect of Communication Change on Long‐term Reductions in Child Exposure to Conflict: Impact of the Promoting Strong African American Families (ProSAAF) Program

    Get PDF
    African American couples (n = 331) with children, 89% of whom were married, were assigned to either (a) a culturally sensitive couple‐ and parenting‐enhancement program (ProSAAF) or (b) an information‐only control condition in which couples received self‐help materials. Husbands averaged 41 years of age and wives averaged 39 years. We found significant effects of program participation in the short term on couple communication, which was targeted by the intervention, as well as over the long term, on self‐reported arguing in front of children. Long‐term parenting outcomes were fully mediated by changes in communication for wives, but not for husbands. For husbands, positive change depended on amount of wife reported change. We conclude that wives\u27 changes in communication from baseline to posttest may be more pivotal for the couples\u27 long‐term experience of decreased arguing in front of children than are husbands\u27 changes, with wives\u27 changes leading to changes in both partners\u27 reports of arguments in front of children

    Of monkeys and men:Impatience in perceptual decision-making

    Get PDF
    For decades sequential sampling models have successfully accounted for human and monkey decision-making, relying on the standard assumption that decision makers maintain a pre-set decision standard throughout the decision process. Based on the theoretical argument of reward rate maximization, some authors have recently suggested that decision makers become increasingly impatient as time passes and therefore lower their decision standard. Indeed, a number of studies show that computational models with an impatience component provide a good fit to human and monkey decision behavior. However, many of these studies lack quantitative model comparisons and systematic manipulations of rewards. Moreover, the often-cited evidence from single-cell recordings is not unequivocal and complimentary data from human subjects is largely missing. We conclude that, despite some enthusiastic calls for the abandonment of the standard model, the idea of an impatience component has yet to be fully established; we suggest a number of recently developed tools that will help bring the debate to a conclusive settlement

    Highly selective BSA imprinted polyacrylamide hydrogels facilitated by a metal-coding MIP approach

    Get PDF
    We report the fabrication of metal-coded molecularly imprinted polymers (MIPs) using hydrogel-based protein imprinting techniques. A Co(II) complex was prepared using (E)-2-((2 hydrazide-(4-vinylbenzyl) hydrazono)methyl)phenol; along with iron(III) chloroprotoporphyrin (Hemin), vinylferrocene (VFc), zinc (II) protoporphyrin (ZnPP) and protoporphyrin (PP), these complexes were introduced into the MIPs as co-monomers for metal-coding of non-metalloprotein imprints. Results indicate a 66% enhancement for bovine serum albumin (BSA) protein binding capacities (Q, mg/g) via metal-ion/ligand exchange properties within the metal-coded MIPs. Specifically, Co(II)-complex-based MIPs exhibited 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/non-imprinted (NIP) control). The selectivity of our Co(II)-coded BSA MIPs were also tested using bovine haemoglobin (BHb), lysozyme (Lyz), and trypsin (Tryp). By evaluating imprinting factors (K), each of the latter proteins was found to have lower affinities in comparison to cognate BSA template. The hydrogels were further characterised by thermal analysis and differential scanning calorimetry (DSC) to assess optimum polymer composition

    Diverse species-specific phenotypic consequences of loss of function sorting nexin 14 mutations

    Get PDF
    Mutations in the SNX14 gene cause spinocerebellar ataxia, autosomal recessive 20 (SCAR20) in both humans and dogs. Studies implicating the phenotypic consequences of SNX14 mutations to be consequences of subcellular disruption to autophagy and lipid metabolism have been limited to in vitro investigation of patient-derived dermal fibroblasts, laboratory engineered cell lines and developmental analysis of zebrafish morphants. SNX14 homologues Snz (Drosophila) and Mdm1 (yeast) have also been conducted, demonstrated an important biochemical role during lipid biogenesis. In this study we report the effect of loss of SNX14 in mice, which resulted in embryonic lethality around mid-gestation due to placental pathology that involves severe disruption to syncytiotrophoblast cell differentiation. In contrast to other vertebrates, zebrafish carrying a homozygous, maternal zygotic snx14 genetic loss-of-function mutation were both viable and anatomically normal. Whilst no obvious behavioural effects were observed, elevated levels of neutral lipids and phospholipids resemble previously reported effects on lipid homeostasis in other species. The biochemical role of SNX14 therefore appears largely conserved through evolution while the consequences of loss of function varies between species. Mouse and zebrafish models therefore provide valuable insights into the functional importance of SNX14 with distinct opportunities for investigating its cellular and metabolic function in vivo
    corecore