271 research outputs found

    Substituent position effects on sunscreen photodynamics : a closer look at methyl anthranilate

    Get PDF
    Towards the development of a bottom-up rationale for sunscreen design, the effects of substituent position on the ultrafast photodynamics of the sunscreen precursor methyl anthranilate (MA, an ortho compound) were evaluated by studying para- and meta-MA in vacuum. Time-resolved ion yield (TR-IY) measurements reveal a long-lived S1 excited state (≫ 1.2 ns) for para-MA, proposed to be the result of a weakly fluorescent, bound excited state. In the case of meta-MA, TR-IY transients reveal a much faster (∼2 ns) excited state relaxation, possibly due to multiple low-lying S1/S0 conical intersections of prefulvenic character. While meta-MA may not be an ideal sunscreen ingredient due to a low ultraviolet absorbance, its comparatively efficient relaxation mechanism may constitute an alternative to common sunscreen relaxation pathways. Thus, our results should prompt further studies of prefulvenic relaxation pathways in potential sunscreen agents

    MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    Full text link
    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics

    The Lick AGN Monitoring Project: Reverberation Mapping of Optical Hydrogen and Helium Recombination Lines

    Get PDF
    We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range ~10^6-10^7M_sun and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad Hbeta emission, which we have previously reported. We present here the light curves for the Halpha, Hgamma, HeII 4686, and HeI 5876 emission lines and the time lags for the emission-line responses relative to changes in the continuum flux. Combining each emission-line time lag with the measured width of the line in the variable part of the spectrum, we determine a virial mass of the central supermassive black hole from several independent emission lines. We find that the masses are generally consistent within the uncertainties. The time-lag response as a function of velocity across the Balmer line profiles is examined for six of the AGNs. Finally we compare several trends seen in the dataset against the predictions from photoionization calculations as presented by Korista & Goad. We confirm several of their predictions, including an increase in responsivity and a decrease in the mean time lag as the excitation and ionization level for the species increases. Further confirmation of photoionization predictions for broad-line gas behavior will require additional monitoring programs for these AGNs while they are in different luminosity states. [abridged]Comment: 37 pages, 18 figures and 15 tables, accepted for publication in the Astrophysical Journa

    Genetic and seasonal determinants of vitamin D status in Confederated Salish and Kootenai Tribes (CSKT) participants

    Get PDF
    Background: Vitamin D is a hormone produced in the skin upon ultraviolet B (UVB) radiation. Vitamin D is a crucial regulator of calcium and phosphate levels for bone mineralization and other physiological roles. Vitamin D levels vary globally in human populations due to genetics, geography, and other demographic factors. It is estimated that 20-85 % of the variability in vitamin D levels is driven by genetic variation. To improve our understanding of contributors to vitamin D levels, we conducted a candidate-gene study in partnership with the Confederated Salish and Kootenai Tribes (CSKT). Methods: We recruited 472 CSKT study participants on the Flathead Reservation in Montana. Demographic factors included age, BMI, and gender (185 male and 287 female; ≥ 18 years old). Genomic DNA and plasma were isolated from whole blood. We sequenced 14 vitamin D regulatory candidate genes: CASR, CUBN, CYP2R1, CYP3A4,CYP24A1, CYP27B1, DHCR7, GC, RXRA, RXRB, RXRG, SULT2A1, UGT1A4, and VDR. We also measured plasma levels of vitamin D and vitamin D metabolites by liquid chromatography/mass-spectrometry (LC/MS), including the clinical marker of vitamin D status, 25-hydroxyvitamin D3 [25(OH)D3]. We tested demographic factors as well as common and rare genetic variants for statistical associations with vitamin D levels using bioinformatics software and R statistical programming language code. Results: We identified 7,370 total genetic variants with 8% (n = 585) of them being novel. We identified 60 genetic variants that may be of clinical significance (disease associated or predicted to influence medication response). Vitamin D levels were below sufficiency [25(OH)D3 + 25(OH)D2 levels \u3c 20 ng/mL] in 56 % of CSKT participants across the year. We observed seasonal vitamin D and metabolite level fluctuations in a seasonal, sinusoidal statistical model with peak concentrations in June – August and trough concentrations in December – February. In linear regression analysis, we found that age, BMI, season, and 5 variants in CUBN and CYP3A4 were significantly associated with 25(OH)D3 concentration (p-value\u3c 0.05). In logistic regression, we found that 4 variants in CUBN, CYP3A4, and UGT1A4 were associated with 25(OH)D sufficiency status [25(OH)D3 + 25(OH)D2 levels of 20 ng/mL] (p-value\u3c 0.05). Multivariate linear regression analysis revealed that genetic variation alone explained ~13% of the variability in 25(OH)D3 concentration in CSKT participants. Genetic variation and environmental factors together explained ~23 % of the variability in 25(OH)D3 concentration in CSKT participants. It is likely that genetic variation in additional genes and other environmental factors (e.g., dietary vitamin D intake) that were not included in this study explain the remaining variability in 25(OH)D3 concentration. Conclusion: This research addresses the need for increased inclusion of American Indian and Alaska Natives in precision medicine health research. We are the first to describe the contribution of season and genetics to vitamin D levels in an American Indian population. Our next steps will be to use these findings to perform mechanistic studies and develop interventional strategies for the CSKT people

    Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements

    Full text link
    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w=−1w=-1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density ΩΛ\Omega_\Lambda confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.Comment: 4 pages, 3 figures; replaced with version accepted by Physical Review Letters, added sentence on models with non-standard primordial power spectr

    The Lick AGN Monitoring Project: Broad-Line Region Radii and Black Hole Masses from Reverberation Mapping of Hbeta

    Get PDF
    We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range ~10^6-10^7 M_sun and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad Hbeta emission. We present here the light curves for the objects in this sample and the subsequent Hbeta time lags for the nine objects where these measurements were possible. The Hbeta lag time is directly related to the size of the broad-line region, and by combining the lag time with the measured width of the Hbeta emission line in the variable part of the spectrum, we determine the virial mass of the central supermassive black hole in these nine AGNs. The absolute calibration of the black hole masses is based on the normalization derived by Onken et al. We also examine the time lag response as a function of velocity across the Hbeta line profile for six of the AGNs. The analysis of four leads to ambiguous results with relatively flat time lags as a function of velocity. However, SBS 1116+583A exhibits a symmetric time lag response around the line center reminiscent of simple models for circularly orbiting broad-line region (BLR) clouds, and Arp 151 shows an asymmetric profile that is most easily explained by a simple gravitational infall model. Further investigation will be necessary to fully understand the constraints placed on physical models of the BLR by the velocity-resolved response in these objects.Comment: 24 pages, 16 figures and 13 tables, submitted to Ap

    Inter-laboratory automation of the in vitro micronucleus assay using imaging flow cytometry and deep learning.

    Get PDF
    The in vitro micronucleus assay is a globally significant method for DNA damage quantification used for regulatory compound safety testing in addition to inter-individual monitoring of environmental, lifestyle and occupational factors. However, it relies on time-consuming and user-subjective manual scoring. Here we show that imaging flow cytometry and deep learning image classification represents a capable platform for automated, inter-laboratory operation. Images were captured for the cytokinesis-block micronucleus (CBMN) assay across three laboratories using methyl methanesulphonate (1.25-5.0 μg/mL) and/or carbendazim (0.8-1.6 μg/mL) exposures to TK6 cells. Human-scored image sets were assembled and used to train and test the classification abilities of the "DeepFlow" neural network in both intra- and inter-laboratory contexts. Harnessing image diversity across laboratories yielded a network able to score unseen data from an entirely new laboratory without any user configuration. Image classification accuracies of 98%, 95%, 82% and 85% were achieved for 'mononucleates', 'binucleates', 'mononucleates with MN' and 'binucleates with MN', respectively. Successful classifications of 'trinucleates' (90%) and 'tetranucleates' (88%) in addition to 'other or unscorable' phenotypes (96%) were also achieved. Attempts to classify extremely rare, tri- and tetranucleated cells with micronuclei into their own categories were less successful (≤ 57%). Benchmark dose analyses of human or automatically scored micronucleus frequency data yielded quantitation of the same equipotent concentration regardless of scoring method. We conclude that this automated approach offers significant potential to broaden the practical utility of the CBMN method across industry, research and clinical domains. We share our strategy using openly-accessible frameworks

    The Genomic Signature of Crop-Wild Introgression in Maize

    Get PDF
    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes were particularly resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly informing our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    • …
    corecore