
Vol.:(0123456789)1 3

Archives of Toxicology (2021) 95:3101–3115 
https://doi.org/10.1007/s00204-021-03113-0

GENOTOXICITY AND CARCINOGENICITY

Inter‑laboratory automation of the in vitro micronucleus assay using 
imaging flow cytometry and deep learning

John W. Wills1,2  · Jatin R. Verma3 · Benjamin J. Rees3 · Danielle S. G. Harte3 · Qiellor Haxhiraj3 · Claire M. Barnes1 · 
Rachel Barnes3 · Matthew A. Rodrigues4 · Minh Doan5 · Andrew Filby6 · Rachel E. Hewitt2 · Catherine A. Thornton3 · 
James G. Cronin3 · Julia D. Kenny7 · Ruby Buckley7 · Anthony M. Lynch3,7 · Anne E. Carpenter8 · Huw D. Summers1 · 
George E. Johnson3 · Paul Rees1,8

Received: 3 May 2021 / Accepted: 29 June 2021 / Published online: 10 July 2021 
© The Author(s) 2021

Abstract
The in vitro micronucleus assay is a globally significant method for DNA damage quantification used for regulatory com-
pound safety testing in addition to inter-individual monitoring of environmental, lifestyle and occupational factors. However, 
it relies on time-consuming and user-subjective manual scoring. Here we show that imaging flow cytometry and deep learning 
image classification represents a capable platform for automated, inter-laboratory operation. Images were captured for the 
cytokinesis-block micronucleus (CBMN) assay across three laboratories using methyl methanesulphonate (1.25–5.0 μg/mL) 
and/or carbendazim (0.8–1.6 μg/mL) exposures to TK6 cells. Human-scored image sets were assembled and used to train 
and test the classification abilities of the “DeepFlow” neural network in both intra- and inter-laboratory contexts. Harness-
ing image diversity across laboratories yielded a network able to score unseen data from an entirely new laboratory without 
any user configuration. Image classification accuracies of 98%, 95%, 82% and 85% were achieved for ‘mononucleates’, 
‘binucleates’, ‘mononucleates with MN’ and ‘binucleates with MN’, respectively. Successful classifications of ‘trinucleates’ 
(90%) and ‘tetranucleates’ (88%) in addition to ‘other or unscorable’ phenotypes (96%) were also achieved. Attempts to 
classify extremely rare, tri- and tetranucleated cells with micronuclei into their own categories were less successful (≤ 57%). 
Benchmark dose analyses of human or automatically scored micronucleus frequency data yielded quantitation of the same 
equipotent concentration regardless of scoring method. We conclude that this automated approach offers significant potential 
to broaden the practical utility of the CBMN method across industry, research and clinical domains. We share our strategy 
using openly-accessible frameworks.

Keywords Micronucleus test · Genetic toxicology · Compound screening · Machine learning · High throughput · Image 
analysis.
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Introduction

Across industry, government and academic research insti-
tutions the in vitro micronucleus test is one of the most 
widely used bioassays for the identification and quantifica-
tion of chromosomal damage (Decordier and Kirsch-Vold-
ers 2006; Fenech 2000, 2020; Kirsch-Volders et al. 2011). 
Because DNA damage at the chromosome level is recog-
nised as a key event in the initiation of carcinogenesis, 
the assay has become an essential component of genetic 
toxicity screening programmes worldwide (Fenech 2000). 
Harmonised assay protocols and scoring approaches have 
been detailed by Organisation for Economic Cooperation 
and Development (OECD)-Test Guideline 487 (OECD 
2016). In addition to regulatory compound screening, the 
assay is also widely used for more specific research and 
clinical purposes including compound mode-of-action 
determinations, tumour radiosensitivity prediction and 
inter-individual monitoring of lifestyle, occupational and 
environmental factors including radiation biodosimetry 
assessments (Decordier and Kirsch-Volders 2006; Fenech 
2000, 2020; Kirsch-Volders et al. 2011; Wang et al. 2019).

The micronucleus assay operates through the detec-
tion of whole chromosomes or chromosome fragments 
expressed by cells after nuclear division as satellite 
‘micronucleus’ (MN) events. Because complete nuclear 
division is required to enable expression of these events, 
the ‘cytokinesis-block’ version of the assay was devel-
oped. This method inhibits cell division into daughter 
entities (cytokinesis) using the microfilament assembly 
inhibitor cytochalasin-B. This yields cells that have suc-
cessfully undergone division easily identifiable by their 
binucleated appearance. In this way, the cytokinesis-block 
micronucleus (CBMN) assay allows scoring of micronu-
cleus events in cells known to have undergone division 
during the treatment period. This avoids misleading results 
otherwise present due to pre-existing damage, sub-opti-
mal cell culture conditions or from the selection of overly 
cytotoxic compound concentrations that retard or inhibit 
cell division and concomitant micronucleus expression 
(Decordier and Kirsch-Volders 2006; Fenech 2000; Kirsch-
Volders et al. 2011).

Despite almost global utilisation, CBMN assay scoring 
still often relies upon manual observation and recording 
using light microscopy. Whilst manual scoring is the ‘gold 
standard’, even when slide identities are blinded, problems 
arise due to inter-scorer variability in addition to the pro-
cess being time and labour intensive (Rodrigues 2014a, 
b, 2018). For these reasons, over the last two decades 
significant efforts have been directed towards automated 
approaches for both image collection and subsequent scor-
ing. As recently reviewed (Rodrigues et al. , 2018), these 

largely involve slide and laser scanning microscopy sys-
tems that automate image collection in conjunction with 
traditional, threshold-based image classification tech-
niques (Darzynkiewicz et al. 2011; Decordier et al. 2009, 
2011; François et al. 2014; Maertens and White 2015; 
Rossnerova et al. 2011; Schunck et al. 2004; Seager et al. 
2014; Smolewski et al. 2001; Varga et al. 2004; Verhae-
gen et al. 1994; Willems et al. 2010). Conventional flow 
cytometry methods have also been developed that aim to 
identify isolated micronuclei using fluorescence intensity 
measurements in the absence of image-based validation 
(Avlasevich et al. 2006; Bryce et al. 2008, 2010, 2013, 
2007).

More recently, imaging flow cytometry unites the acquisi-
tion approach of flow cytometry with microscopical obser-
vation (Allemang et al. 2021; Rodrigues 2018, 2019; Rod-
rigues et al. 2014a, b, 2016a, b, 2018; Wang et al. 2019; 
Wilkins et al. 2017). This fluidics-based approach is well 
suited for processing cell suspension cultures (e.g., TK6 
B-lymphocytes commonly used for the CBMN assay) ena-
bling rapid collection of transmitted light brightfield, dark-
field laser scatter and fluorescence images for populations of 
tens of thousands of single cells. Simple inclusion of a single 
nuclear fluorescent stain (e.g., Hoechst 33342, propidium 
iodide or DRAQ5 etc.) allows detection of parent nuclei and 
micronucleus events (Rodrigues 2018, 2019; Rodrigues et al. 
2016b, 2018). Without need of further labels, the brightfield 
images provide essential context for detecting micronuclei 
associated with parent cells (Rodrigues et al. 2014a; Verma 
et al. 2018). The ‘Amnis  ImageStreamX’ series cytometers 
(Luminex Corporation) further support unassisted data 
acquisition for multiple samples via a 96-well plate sam-
pling attachment. Images are stored to sample-specific data 
files enabling archiving should human validation or reevalu-
ation be required (Rodrigues et al. 2018). Traditional image 
classification approaches deployed within the manufacturer-
supplied analysis software have shown utility for CBMN 
scoring automation (Rodrigues 2014a, 2014b, 2016a, 
2016b,2018, 2019; Wang et al. 2019; Wilkins et al. 2017). 
However, in our experience, these strategies require signifi-
cant expertise to set up, in addition to frequent tuning to 
maintain acceptable performance, even within a single labo-
ratory (Verma et al. 2018). Deviations of around 30% from 
the results obtained by manual microscopy scoring have also 
been reported in experiments utilising this approach to study 
irradiated peripheral blood lymphocytes (Rodrigues et al. 
2016b). This outcome was in part attributed to the lack of 
flexibility of the implemented image analysis algorithms 
relative to the expertise of human judgement (Rodrigues 
et al. 2016b, 2018).

Building image classification strategies that generalise 
well enough to permit robust, entirely automated image 
classifications without need of human intervention or 



3103Archives of Toxicology (2021) 95:3101–3115 

1 3

configuration is a difficult task. This is because, even when 
protocols are harmonised, there will always be variability 
(e.g., illumination, focus and fluorescence staining hetero-
geneity etc.) in the input image data. This variation is even 
more extreme across laboratories due to the inevitable use 
of different imaging equipment, calibration settings, person-
nel, cell culture and bioassay regimens. Recently, artificial 
intelligence approaches have been achieving increasing suc-
cess in providing generalised automation of image classifi-
cation tasks (Caicedo et al. 2019; Moen et al. 2019). These 
approaches can use handcrafted features extracted from 
images in conjunction with machine learning algorithms, but 
increasingly, the availability of computational power is ena-
bling the application of deep learning on image pixel data 
(Blasi et al. 2016; Eulenberg et al. 2017). This approach uses 
so-called deep convolutional neural networks in a manner 
inspired by neural connectivity in the brain. A typical image 
classification workflow involves assigning ‘ground truth’ 
class annotations to a large set of images before subdividing 
them into ‘train’ and ‘test’ data sets. The weights connecting 
the nodes of the neural network are then optimised during 
a training phase that attempts to match the input images to 
the annotated classifications. A potential issue due to the 
flexibility of neural networks as non-linear function approxi-
mators is that ‘memorisation’ due to over-fitting of training 
data can emerge (Zhang et al. 2017). For this reason, final 
network accuracy is assessed by cross validation against a 
test set that importantly was entirely ‘unseen’ during the 
training phase. Subsequently, the trained neural net can be 
deployed for the classification of new images.

In the context of the CBMN assay, deep learning 
approaches were recently used on imaging flow cytometry 
data using the cytometer manufacturer’s ‘Amnis Artificial 
Intelligence’ software to identify binucleated cells in the 
3-D reconstructed skin micronucleus assay. This binucle-
ated cell population was then used as a refined start point 
from which to expedite manual identification of micronu-
cleus events (Allemang et al. 2021). However, there would 
be considerable value in openly accessible frameworks for 
accessibility and for adaptability: the modular nature of 
modern, open source deep learning interfaces allows new 
network architectures to be easily switched or specifically 
tailored as they emerge. This flexibility provides complete 
ability to build bespoke solutions using the latest tools to 
pursue maximal accuracy and the accommodation of diverse 
research objectives.

Here, we used imaging flow cytometry to automate image 
capture for the CBMN assay across three laboratories using 
differing local protocols for cell culture, bioassay proce-
dure, DNA staining, cytometer calibration and image collec-
tion. Given the inherent variability in the captured images, 
we investigate the ability of deep learning to enable robust, 
inter-laboratory scoring automation. To do this, we provide 

an open framework that utilises the powerful, yet lightweight 
DeepFlow neural network architecture that has been previously 
optimised to achieve rapid training and classification of imag-
ing flow cytometry data (Eulenberg et al. 2017).

Materials and methods

Multi‑centre image collection

Image data was collected using three different Amnis 
 ImageStreamX imaging flow cytometers (Luminex Corpo-
ration, USA) across three locations: Central Biotechnology 
Services, Cardiff University School of Medicine (hereafter, 
Cardiff), the Department of Veterinary Medicine’s Imaging 
Facility, University of Cambridge, UK (Cambridge) and at 
GlaxoSmithKline Research and Development, Stevenage, 
UK (GSK).

Chemicals

Methyl methanesulphonate (MMS) (#129925) (CAS regis-
try number 66–27-3) and carbendazim (#378674) (CAS no. 
10605–21-7) were purchased from Sigma-Aldrich (Merck), 
UK.

Cardiff and Cambridge: cell culture 
and cytokinesis‑block micronucleus assay

P53 competent, virally transformed human B lymphoblas-
toid (TK6) cells were purchased from the Health Protection 
Agency Culture Collections (Wiltshire, UK). The cells were 
cultured in RPMI 1640 media (#A1049101, ThermoFisher) 
supplemented with 100 U/mL penicillin and 100 μg/mL 
streptomycin and containing 10% (v/v) heat-inactivated 
horse serum (#26050088, ThermoFisher). Cells were 
seeded at 2 ×  105 cells/mL in 25  cm2 flasks (ThermoFisher) 
and incubated at 37 °C for ~ 1.5 cell cycles (24–30 h) in the 
presence of MMS (0/1.25/2.5/5.0 μg/mL concentrations) or 
carbendazim (0/0.8/1.0/1.6 μg/mL concentrations) delivered 
using dimethyl sulphoxide (DMSO) as a vehicle, with co-
exposed cytochalasin-B (#C6762, Sigma) added to a final 
concentration of 3 μg/mL as a cytokinesis block. Follow-
ing exposure, cells were pelleted by centrifugation (200xg, 
10 min) and washed once with 10 mL phosphate buffered 
saline (PBS). Cells were then pelleted and resuspended 
in 2 mL 1× BD FACS lysing solution (#349202, BD) for 
12 min to achieve fixation and permeabilisation.

GSK: cell culture and cytokinesis‑block micronucleus 
assay

TK6 (IVGT) cells (#13051501) purchased from ECACC, 
operated by Public Health England (Wiltshire, UK). The 
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cells were cultured in RPMI 1640 media with 2 mM glu-
tamine (#52400025, ThermoFisher) supplemented with 100 
U/mL penicillin and 100 μg/mL streptomycin (#15140-122, 
ThermoFisher), 1.8 mM sodium pyruvate (#11360-039, 
ThermoFisher) and containing 10% (v/v) heat-inactivated 
horse serum (#26050-088, BioSera, Labtech, UK). Cells 
were seeded at 2 ×  105 cells/mL in 25   cm2 flasks (Ther-
moFisher) and incubated at 37 °C for 24 h in the presence of 
carbendazim (0/0.8/1.2/1.6 μg/mL concentrations) delivered 
using dimethyl sulphoxide (DMSO) as a vehicle, with co-
exposed cytochalasin-B (#C6762, Sigma) added to a final 
concentration of 6 μg/mL as a cytokinesis-block. Follow-
ing exposure, cells were pelleted by centrifugation (200xg, 
10 min) and washed once with 10 mL PBS (#10010-015, 
ThermoFisher). Cells were then pelleted and resuspended 
in 2 mL 1X BD FACS lysing solution (#349202, BD) for 
12 min to achieve fixation and permeabilisation.

Nuclear labelling

Fixed, permeabilised cells were incubated with nuclear 
stains in PBS at room temperature. Nuclei and micronu-
clei were stained at the Cardiff and GSK laboratories by 
30 min incubation with 0.05 mM DRAQ5 (peak excita-
tion: 647 nm, peak emission: 681 nm) (#564902, BD). 
Samples at the Cambridge laboratory were stained with a 
1:2500 dilution (8 μM) of Hoechst 33,342 (peak excitation: 
351 nm, peak emission: 461 nm) (#62249, ThermoFisher) 
for 30 min. After labelling, cells were pelleted, resuspended 
and final cell concentrations adjusted through addition of 
PBS towards an optimal cell concentration for imaging flow 
cytometry (typically ~ 100 μL sample volumes at ~  107 cells/
mL).

Imaging flow cytometry

Brightfield and nuclear fluorescence images (20,000 
images/sample) were collected using Amnis  ImageStreamX 
(Luminex) flow cytometers using the 40× objective lens via 
the manufacturer’s INSPIRE software at the Cardiff, Cam-
bridge and GSK laboratories (described above). At Cardiff 
and GSK, DRAQ5-labelled cells were excited using 488 nm 
or 642 nm lasers (respectively) with the brightfield collected 
in channel 1 and DRAQ5 in channel 11. At Cambridge, Hoe-
chst 33342-labelled cells were excited using a 405 nm laser 
with brightfield collection in channel 4 and nuclear fluo-
rescence collection in channel 1. At all locations, a bright-
field area range of 100–900 µm2 was used to avoid debris, 
speed bead (i.e., the calibration beads that are run alongside 
cells to aid synchronisation of the camera and flow stream) 
and large aggregate image collection. Full details of image 
acquisition settings including the laser excitation powers the 

exact cytometer models utilised at each location are provided 
in Supplementary Table S1.

Compensated image file generation using IDEAS

Prior to image extraction, raw image files (.rif) acquired 
by the INSPIRE software were converted to compensated 
image files (.cif) using identical settings via batch process-
ing with a template using the IDEAS (version 6.2) software 
(Luminex). During the process, populations of cell images 
suitable for scoring were refined by gating out (brightfield 
area, 200–500 µm2 versus aspect ratio, 0.75–1.0) debris and 
identifying a single cell population that was also suitably in 
focus. This was achieved by linescan gradient via the root 
mean square of the brightfield images ranging from 55 to 80.

Image data pre‑processing: CIF to TIF extraction

Single, in-focus cell populations were exported from the 
IDEAS software in compensated image file format (.cif). 
The individual cell images within these files were then 
extracted to 16-bit grayscale, two-channel (nuclear fluores-
cence/brightfield) multipage TIF files using a custom script 
(code and example available for download from the BioS-
tudies database (http:// www. ebi. ac. uk/ biost udies) in MAT-
LAB and Python programming languages under accession 
number S-BSST641). During this TIF extraction process, 
each channel image was also max/min rescaled to normal-
ise illumination. Images were also cropped and zero-padded 
(i.e., zeros added along image edges) enabling output at a 
constant 64 × 64 pixel-square size for input into the Deep-
Flow network.

Deep learning image classification

Automated scoring was achieved using a nine-class, feed-
forward, image classification deep neural network built using 
our previously described “DeepFlow” architecture (Eulen-
berg et al. 2017). This network is optimised for the relatively 
small input dimensions of imaging flow cytometry data, and 
in itself utilises dual-path convolution/batch normalisation/
nonlinearity subunits interspersed by max pooling from 
the popular “Inception” architecture (Szegedy et al. 2015). 
These subunit layers process and aggregate visual informa-
tion at increasing scale before average pooling, the fully 
connected layer and softmax classification (full network 
architecture shown, Supplementary Figure 1). Images were 
passed to the network with an input size of 64 × 64 × 2 (x, 
y, channels), with augmentation by random x/y reflection, 
rotation, translation, 90–110% image scaling and zero-center 
batch normalisation. Training lasted for 30 epochs using a 
batch size of 88 with optimisation under ADAM using cross-
entropy loss. The initial learn rate was 5 ×  10–3, dropping 

http://www.ebi.ac.uk/biostudies
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every five epochs by 0.9, with L2 regularisation 1 ×  10–4 
and epsilon 1 ×  10–8. Images were shuffled every epoch. 
The final pre-trained network alongside test images and 
all code detailing training hyper-parameters and final layer 
weightings are available for download in MATLAB (using 
the Deep Learning Toolbox) or Python (using TensorFlow/
keras) languages at the BioStudies database (http:// www. 
ebi. ac. uk/ biost udies) under accession number S-BSST641.

Ground truth curation by human scoring

For the Cardiff/Cambridge analyses, cell image data across 
compounds (carbendazim and MMS) and exposure concen-
trations (0–5 μg/mL) were merged to create diverse ground 
truth training sets that contained the wide representation 
of different cell phenotypes essential for effective network 
training. Ground truth classifications for each image were 
assigned by biologists with extensive experience manually 
scoring the in vitro micronucleus assay, with phenotypes 
assigned through consideration of both the nuclear fluo-
rescence and the brightfield image (i.e., ensuring nuclear 
events belonged to one cell etc.). As per micronucleus 
assay test guidance, the aim was to only score cells posi-
tive for micronucleus events, where the micronuclei were 
fluorescently-labelled, were circular/oval in shape, were 
within the size range of 1/3–1/16th that of the parent nuclei, 
and that were clearly inside the cell boundary of the parent 
cell (Fenech 2000; OECD 2016). At the GSK laboratory, 
TK6 cells were exposed to just the carbendazim compound 
(0/0.8/1.2/1.6 μg/mL concentrations) with the experiment 
conducted in triplicate. For the initial network cross valida-
tion with the GSK data, five thousand human-scored cell 
images were used with these events equally accumulated 
from across all carbendazim exposures. For the concentra-
tion–response analysis, cell populations of two thousand 
events were scored per concentration in triplicate by either 
human-scoring or by the neural network.

Statistical significance of micronucleus responses 
relative to control

Assessment of micronucleus response significance was 
conducted according to the framework described in John-
son et al. (2014). Response data was  log10 transformed and 
assessed for normality and variance homogeneity by Shap-
iro–Wilk and Bartlett tests, respectively. Where the trans-
formed data passed these tests (p > 0.05), comparisons of 
micronucleus responses relative to untreated negative con-
trols employed one sided post hoc Dunnett’s test with alpha 
0.05. Data sets that failed these tests (p < 0.05) were ana-
lysed using the non-parametric post hoc Dunn’s test.

Benchmark dose analysis

To compare the concentration–response relationships 
obtained from human expert scoring relative to those 
obtained from automatic scoring using the trained neural 
network, nonlinear regression analysis using the Bench-
mark Dose (BMD) framework was used. Using the freely 
available PROAST software, concentration–response data 
were analysed using both the exponential and the Hill 
model family recommended for the assessment of contin-
uous toxicity data by the European Food Safety Authority 
(EFSA) (Hardy et al. 2017). In each analysis, combined 
data sets (i.e., across scoring methods) were analysed 
together with ‘scoring method’ specified as a potential 
covariate (Wills et al. 2016). More complex models with 
additional parameters were accepted if the fit significantly 
(p < 0.05; log-likelihood) improved. Here, as in previous 
work, we found that the log-steepness (parameter d) and 
maximum response (parameter c) could reasonably be 
held equal across concentration–response curves, whereas 
the parameters for background response (parameter a), 
potency (parameter b), and within-group variance (var) 
were found to be covariate-dependent (Slob and Setzer 
2014). The BMD output describes the ‘equipotent con-
centration’ of the modelled concentration–response rela-
tionships in addition to the bounding, two-sided 90% 
confidence interval for each level of the covariate. The 
benchmark response (BMR) size (also termed the criti-
cal effect size) used was 50%, which represents a 50% 
increase in response relative to the background estab-
lished in the vehicle (zero-concentration) control.

Results

Here, we investigate the ability of deep learning to provide 
generalised automation of CBMN assay scoring using imag-
ing flow cytometry data acquired according to local proto-
cols across three different laboratories (Cardiff, Cambridge 
and GSK). Figure 1a demonstrates our workflow. At the end 
of the assay, cells were fixed and permeabilised before fluo-
rescent nuclear staining. The choice of nuclear stain varied 
across the different laboratories according to compatibility 
with the laser configuration of the local imaging cytometer. 
At Cambridge, cells were labelled with the blue-fluorescent 
dye Hoechst 33342 which was stimulated by a 405 nm laser 
with image capture using an  ImageStreamX cytometer. At 
Cardiff and GSK,  ImageStreamX MKII cytometers were 
used in conjunction with the red-emitting DRAQ5 nuclear 
stain and excitation by either a 488 nm or 642 nm laser 
(respectively). Full details of image acquisition settings 
at each laboratory are shown in Supplementary Table 1. 
Image acquisition speeds depended on cell concentrations, in 

http://www.ebi.ac.uk/biostudies
http://www.ebi.ac.uk/biostudies
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addition to the time taken to purge the flow stream and load 
each new sample; approximately ~ 2000–5000 cell images/
min was typical.

After image collection, a template file created in the 
cytometer manufacturer’s IDEAS software was used to 
automatically batch-save populations of single cells that 
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additionally met acceptable focus criteria (see Methods). 
These cell populations served as the input into the deep 
learning scoring pipeline. This workflow is provided 
for download in both MATLAB and Python program-
ming languages at the Biostudies database (accession no. 
S-BSST641). In brief, the download demonstrates initial 
image pre-processing to normalise image illumination across 
cytometers in addition to how to build and train the Deep-
Flow neural network using a human-scored training image 
set. After successful training, the saved network can sub-
sequently be used to automate the scoring of new images. 
For example, Fig. 1b–j shows typical events classified by a 
pretrained, nine-class network with cell classes for mononu-
cleates, binucleates, trinucleates and quadranucleates with 
or without micronucleus events in addition to a final class 
for ‘other or unscorable’ phenotypes.

As introduced above, an essential component of network 
testing involves cross validation with human-scored test 
images unseen during the training phase. We display this 
evaluation as a confusion matrix, which compares network 
outputs to the human scores for every image in the test set 
(explained, Fig. 1k). In the subsequently presented results, 

we use this strategy to rigorously test the ability of a range of 
trained networks to enable automated CBMN assay scoring 
in both intra- and inter-laboratory contexts. In each instance, 
human-scored image sets were built from cell events pooled 
across the available compounds and exposures. This strategy 
was chosen to maximise the diversity of cellular phenotypes 
present, as well as to ensure that the rarer, micronucleated 
phenotypes that predominately manifested at higher expo-
sures were well represented.

First, we tested the ability of a network trained on one lab-
oratory’s data to work well for unseen data from that same 
laboratory (i.e., ‘single-laboratory testing’) using imaging 
flow cytometry data collected at either Cardiff or Cambridge 
(Fig. 2). In this single laboratory context, images were ran-
domly assigned to training (60%) and unseen testing (40%) 
groups. In both instances, the overall accuracies within this 
single-laboratory context were very high (91.3% and 90.5% 
for Cardiff and Cambridge, respectively). However, the com-
piled test sets were quite imbalanced in terms of the numbers 
of images per class, with network performance with some of 
the sparser classifications less well represented by the metric 
of overall accuracy.

For Cardiff (Fig. 2a), whereas accuracy in classification 
of the common parent nuclei classes (i.e., mononucleates, 
binucleates, trinucleates) was generally very good (> 97%), 
20 out of a total of 78 events (~ 25%) human-scored as ‘binu-
cleate + MN’ were misclassified as ‘binucleates’ by the net-
work. Similarly, around 35% of the human-scored ‘mononu-
cleate + MN’ events were outputted into the ‘mononucleate’ 
or ‘other/unscorable’ classes, with a further ~ 20% of ‘tetra-
nucleated’ test images misclassified as ‘trinucleates’. Despite 
scoring ~ 10,000 total events from the Cardiff cytometer, the 
very rarest cell phenotypes represented by the ‘tetranucleate 
with MN’ and ‘trinucleate with MN’ classes presented at 
very low frequency (~ 0.27% and 0.47%, respectively). This 
led to sparsity in the training set which appeared associ-
ated with the network missing micronucleus events, as the 
‘trinucleate + MN’ images were often misclassified into the 
‘trinucleate’ or ‘tetranucleate’ classes. In a similar manner, 
‘tetranucleate + MN’ images were often misclassified into 
the ‘trinucleate’ or ‘binucleate + MN’ categories.

Similar results were observed within the Cambridge labo-
ratory (Fig. 2b). Whereas accuracies with the ‘mononucleate 
plus MN’ and ‘binucleate plus MN’ classes showed slight 
improvement when compared against Cardiff, accuracies 
with the sparser, micronucleated tri- and tetranucleated cells 
again suffered (~ 44 and ~ 33% error rates, respectively).

We next considered the ability of the networks trained 
on single-laboratory data to generalise to the task of 
scoring the image data collected from the opposite Cen-
tre (Fig. 3). This was expected to be a difficult task given 
that the networks had been trained initially with fairly 
small numbers of images, because the two laboratories 

Fig. 1  Automating the in  vitro micronucleus assay using imaging 
flow cytometry and deep learning image classification. a Workflow: 
harvested cells were fixed and permeabilised before counterstaining 
the nuclei with a fluorescent DNA stain. Transmitted light brightfield 
(grey) and nuclear fluorescence (red) images were then automatically 
captured by high-throughput imaging flow cytometry. After initial 
training using a human-annotated image set, single cell images from 
the cytometer can be automatically classified using the neural net-
work image classification algorithm. b–j Example image classifica-
tions according to a nine-class network developed to score the cytoki-
nesis-block in  vitro micronucleus assay in human lymphoblastoid 
TK6 cells. k Example cross-validation ‘confusion matrix’ obtained 
during preliminary network optimisations and presented here to dem-
onstrate confusion matrix interpretation. The matrix represents an 
image set scored by humans that is ‘unseen’ during network training. 
The horizontal direction represents the human scorer classifications, 
whilst the vertical direction shows the automated output classifica-
tions from the network. The green diagonal represents correct, match-
ing classifications: for example (indicated, red box) 4000 ‘binucleate’ 
images, representing 39.6% of the total test image set, were classified 
correctly. Away from this diagonal, misclassifications are shown, e.g., 
(yellow box) 21 images (0.2%) labelled as ‘trinucleates’ by human 
scoring were incorrectly classified as ‘binucleates’ by the network. In 
the bottom-right corner (green box) the overall network accuracy and 
overall misclassification rate are shown for all nine classes (94.4% 
and 5.6%, respectively). In the white squares down the right-hand 
side of the matrix, the network precision, i.e., true positive/(true posi-
tive plus false positive) (green percentages) and the false discovery 
rate, i.e., 100-precision (red percentages) are shown for each clas-
sification. The horizontal bottom white row shows the network sen-
sitivity, i.e., true positive/(true positive plus false negatives) (green 
percentages) and false negative rates (red percentages), respectively. 
Therefore, for example, 95.4% of the images classified as binucle-
ates by the network were binucleates by human-scoring (blue box), 
whereas the trained model can be expected to correctly assign the 
binucleate class 98.6% of the time (magenta box). Scale bars equal 5 
microns (color figure online)
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had utilised different cytometer models  (ISX versus 
 ISX Mk II) and nuclear stains (Hoechst at Cambridge 
or DRAQ5 at Cardiff). This presented the likelihood of 

overfitting during training—yielding networks highly 
adapted to the task of scoring data from that particular 
laboratory.

Fig. 2  Assessing automated scoring accuracies using intra-laboratory 
train and test data. a, b Confusion matrices comparing human scor-
ing versus deep learning image classifications for test image sets of 
approximately four thousand unseen images. In each instance, the 

results reflect the outputs from nine-class networks trained and tested 
exclusively on image-data from one imaging cytometer at either the a 
Cardiff or b Cambridge laboratories

Fig. 3  Assessment of automated network scoring accuracies using 
inter-laboratory test data. a, b Confusion matrices comparing human 
scoring versus deep learning image classifications for test image sets 
of approximately ten thousand unseen images. In each instance, the 
results reflect the outputs from nine-class networks trained exclu-

sively on image data from one laboratory’s imaging cytometer before 
cross-validation testing against image data collected at a different lab-
oratory. a Network accuracies after training using Cardiff data before 
testing on unseen Cambridge data. b Network accuracies after train-
ing on Cambridge data then testing on unseen Cardiff data
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Despite these factors, at first glance the overall accu-
racies appeared quite encouraging at 77.6% for the Car-
diff-trained network classifying the Cambridge images 
(Fig. 3a) and 87.5% for the Cambridge network classifying 
Cardiff images (Fig. 3b). Comparing across the individual 
classes, it was apparent that the Cambridge-trained model 
generalised slightly better to the task of scoring the Cardiff 
data than was observed vice versa. Closer examination, 
however, showed that the metric of overall accuracy was 
weighted by the prevalence of the easily identified ‘mon-
onucleate’ and ‘binucleate’ phenotypes, which masked 
assessment of the ability of the networks to identify the 
micronucleated classes representing DNA-damage events 
(Fig. 3a, b). In this regard, in almost all instances, the 
accuracy of micronucleated event detection suffered con-
siderably compared to the results achieved with labora-
tory-matched test data (Fig. 2).

With these single-laboratory results established, the 
images from Cambridge and Cardiff were combined 
together. This increased the diversity of training exemplifi-
cations considerably given the use of two different nuclear 
stains, two compounds, different imaging cytometers and no 
‘hold out’ requirement for cross validation testing. Training 
a new DeepFlow neural network on this combined training 
set (~ 19,000 images) took approximately 1 h using modest 
hardware (single RTX 2080 GPU). The resulting network 
was then cross validated using a test set where both the bio-
assay and imaging cytometry were conducted at an entirely 
new, third laboratory (GSK). Scoring ~ 5,000 test-images 
took around 6 s on the RTX 2080 hardware or ~ 82 s on 
a single CPU. This time, the network showed much bet-
ter ability to generalise to the task of successfully scoring 
the images from the new laboratory (Fig. 4a). Across the 
four core classes central to utilisation of CBMN assay (i.e., 
‘mononucleate’, ‘mononucleate plus MN’, ‘binucleate’ and 
‘binucleate plus MN’), and with no user input or configura-
tion required, the network achieved 98%, 82%, 94%, and 
85% accuracies, respectively.

We then examined failure cases, starting with 22 
instances where the network detected micronucleus events 
in cells scored by humans as just mono- or binucleated 
(Fig. 4a). Surprisingly, many did, in fact, appear to have 
faint or partially occluded potential micronucleus or nuclear 
bud events that would have been extremely difficult for the 
human scorer to detect (Fig. 4b, c). Similarly, visualisation 
of cell events scored by humans as either ‘mononucleate 
with MN’ or ‘binucleate with MN’, but outputted by the 
network as ‘binucleate’ or ‘trinucleate’ showed that these 
images often contained very large micronucleus events 
(Fig. 4d, e). Indeed, some of these likely exceeded the upper 
size limitation typically imposed on micronucleus classifi-
cations (i.e., ≤ 1/3 diameter of the parent nuclei) suggesting 
additional validity to the network’s outputs.

Progressing towards the less frequent cell phenotypes, the 
accuracies achieved with the ‘trinucleate’ and ‘tetranucleate’ 
cell classes were also good at 90% and 88%, respectively. 
However, detection of these cell types with micronucleus 
events was either quite poor or failed entirely. Again, this 
outcome was likely related to extreme sparsity in occurrence 
(< 0.25% frequency in the training data). In an attempt to 
improve accuracies with these classes, we tried both class 
weighting the classification layer and combining tri- and 
tetranucleated events with and without micronucleus events 
into a single, ‘polynucleated’ class (Supplementary Fig-
ure 2). Whereas both strategies somewhat improved the clas-
sification accuracies with these rare events, they were also 
found to compromise the accuracies achieved with one or 
more of the four core phenotypes more central to successful 
CBMN assay scoring.

Given that the frequency of binucleated cells with or 
without micronucleus events represents the core readout for 
successful DNA damage assessment by the CBMN assay, 
after validating the network we proceeded to assess the binu-
cleated-cell micronucleus frequency for a three concentra-
tion plus control experiment conducted in triplicate with car-
bendazim at the GSK laboratory. For each concentration and 
replicate, 2000 cell images were scored both manually and 
automatically. Visually, the resultant concentration–response 
relationships appeared similar across the human and neural 
network scoring approaches, with the human scores con-
sistently fractionally higher for each concentration group 
(Fig. 4f). To better understand the consequences of this using 
a recognised, quantitative framework for genotoxic potency 
estimation, the concentration–response relationships were 
fitted using both the exponential and the Hill model families 
recommended for the assessment of continuous toxicity data 
using Benchmark Dose (BMD) analysis (Hardy et al. 2017). 
With scoring method specified as a potential covariate, 
model fitting with the PROAST package resulted in covari-
ate-dependent parameterisation for the background response 
(parameter a) and for within-group variation (var). For both 
model families, this parameterisation subsequently allowed 
rejection of scoring method as covariate, yielding the same 
estimation for the equipotent, benchmark concentration from 
both manual and automated methods (Fig. 4g). Model fits to 
the data are presented in Supplementary Figure 3.

Discussion

The CBMN assay represents a globally significant method 
for the identification and quantification of chromosomal 
damage (Fenech 2000, 2020; OECD 2016). Its utility 
reaches beyond regulatory compound screening to encom-
pass inter-individual monitoring of wide-ranging lifestyle, 
occupational and environmental factors (Fenech 2020; 
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Kirsch-Volders et al. 2011; Wang et al. 2019). Despite this, 
continued reliance upon time-consuming and user-subjective 
manual scoring represents a bottleneck to broadening practi-
cal utilisation (Seager et al. 2014; Verma et al. 2017, 2018). 
In this pilot study, we show that rapid image acquisition by 
imaging flow cytometry in conjunction with deep learning 
image classification represents a capable platform for auto-
mated, inter-laboratory operation. We share our strategy via 
openly accessible frameworks.

As an image acquisition method, imaging flow cytome-
try is now well established as a means for high-throughput 
CBMN data capture with concomitant image archiving 
potential (Rodrigues et al. 2014a, 2016a, 2018). Moreover, 
this is achieved with simple sample preparation involving 
a single nuclear stain and brightfield to provide the context 
that events lie inside parent cells (Rodrigues et al. 2018). 
Comparison studies have shown that the captured images 
contain concentration–response information that aligns to 
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results obtained from ‘gold standard’ manual microscopy 
scoring (Verma et al. 2018). Whereas conventional flow 
cytometry offers faster throughput, it lacks this image-
based validation and archiving capability whilst addition-
ally requiring cell lysis to operate. This prevents utilisation 
of the cytokinesis-block version of the assay, complicating 
quantitation of mononucleated, binucleated and different 
classes of multinucleated cells in addition to necessitating 
means to reliably exclude DNA fragments arising from 
apoptotic and necrotic cells from micronucleus count data 
(Bryce et al. 2007; Lukamowicz et al. 2011; Rodrigues 
et al. 2018).

Beyond image collection, automated scoring of imag-
ing flow cytometry data—as with other automated micros-
copy strategies—has thus far largely relied upon traditional, 
threshold-based image classification techniques. These 
require image analysis expertise to implement, alongside 
user-configuration and tuning to maintain performance 
(Rodrigues et al. 2018; Seager et al. 2014; Verma et al. 
2017). Unfortunately, much as with traditional manual scor-
ing, this is time-consuming and subjective.

In contrast, once successfully trained, the results achieved 
here suggest that deep learning image classification has the 
potential to eliminate these expertise and user-input require-
ments, dramatically reducing the time to results. This comes 
from encompassing image diversity during network training 
and harnessing it to improve the consistency and robustness 
of subsequent classifications. To this end, here we show that 
utilisation of diverse training data curated across two labora-
tories utilising different nuclear stains, multiple compounds 
and two different cytometer models yielded a capable neu-
ral network for scoring automation. Without user configura-
tion, the network was able to classify data collected from an 
entirely new laboratory with > 82% accuracy for each of the 
four cell phenotypes central to CBMN performance (i.e., 
mononucleate and binucleate cells with or without micronu-
cleus events) in addition to successfully classifying tri- and 
tetranucleated cells (> 88% accuracy) and unscorable events 
(96% accuracy). Importantly, these seven classes encom-
passed virtually all of the cell images encountered (> 99%). 
Success at micronucleus detection in both mononucleate 
and binucleate cell classes further suggests that this single 
network could be used to automate scoring of both mononu-
clear and cytokinesis-block versions of the assay.

Despite this success with the assay classes central to 
CBMN scoring, the scarce, tri- and tetranucleated pheno-
types with micronucleus events proved more challenging. 
Commonly employed methods such as class weighting 
or class combination offered little in the way of accuracy 
improvements, and often compromised accuracy with 
the other classes. These findings suggest that significant 
increases in the representation of these sparse events during 
training will likely be required to improve success. In this 
context, imaging flow cytometry is well suited to examine 
whether an improved image bank leads to enhanced accu-
racy in scoring given the high rates of image capture achiev-
able. Our results also suggests that class reduction does not 
necessarily simplify the classification problem and may 
instead cause ambiguities. In this way, future expansions to 
the number of classes to encompass all distinctive cellular 
phenotypes may represent a route to improving overall net-
work performance.

In this regard, we identified additional, potentially scora-
ble cell phenotypes (Fig. 5). In particular, cell death events 
(i.e., due to apoptosis and necrosis) were visually apparent, 
but we were unable to determine apoptotic from necrotic 
events using just the brightfield and nuclear fluorescence 
images alone. Cells caught during mitosis also represented 
distinctive events. At the same time, we were less convinced 
that more subtle phenotypes relevant to the expanded, 
CBMN cytome assay such as nuclear buds and bridges could 
reliably and consistently be detected—given the relatively 
low resolution of the image data (Fenech 2007). However, 
it is important to note that previous studies demonstrating 

Fig. 4  Network accuracy and concentration–response assessment 
using unseen test data from a new laboratory. a Confusion matrix 
showing human versus deep learning image classifications for a test 
image set of approximately five thousand unseen images. Here, the 
neural network was trained using image data from both the Cam-
bridge and Cardiff laboratories before testing on new, unseen imag-
ing cytometry data acquired at a third laboratory (GSK). b Cell 
events human scored as ‘binucleates’ but classified as ‘binucleate 
plus MN’ by the neural network (i.e., red square in a). c Cell events 
human scored as ‘mononucleates’ but classified as ‘mononucleate 
with MN’ by the neural network (i.e., blue square in a). b, c Close 
examination of the purportedly misclassified cells shows that many 
display indistinct events that might be micronucleus or nuclear buds 
missed by the human scorer (indicated, white arrows). d Cell events 
human scored as ‘mononucleate with MN’ but classified as ‘binucle-
ate’ by the neural network (i.e., magenta square in a). e Events human 
scored as ‘binucleate with MN’ classified as ‘trinucleate’ by the neu-
ral network (i.e., yellow square in a). d, e In both instances, some of 
the human-scored micronucleus events encroach upon the 1/3 parent 
nuclei upper-size limitation typically imposed on micronucleus clas-
sifications. b–e For each event, the white percentages represent neural 
network confidence in the outputted classification. f Binucleated-cell 
micronucleus frequencies for a three concentration plus control con-
centration–response experiment performed in triplicate for carben-
dazim exposure to TK6 cells. Scores were established from image 
sets of 2,000 events per replicate by human scoring or by the cross-
validated network established in (a). (*) (**) (***) indicate statisti-
cal significance relative to control at p < 0.05, p < 0.01 and p < 0.001, 
respectively. g Covariate benchmark dose (BMD) modelling using 
concentration–response data from either the human (black) or auto-
mated neural network (red) scores established in (f). The horizontal 
and vertical dashed lines represent interpolation to determine the 
equipotent, benchmark concentration for a benchmark response size 
of 50%. Regardless of human or automated scoring, the model pre-
dicts the same benchmark concentration. Scale bars equal 5 microns 
(color figure online)

◂
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capture of these phenotypes by imaging flow cytometry have 
utilised both the 60× ImageStream objective lens in addi-
tion to hypotonic treatments to swell cell volumes prior to 
imaging (Rodrigues et al. 2018; Rodrigues 2019). Hypotonic 
treatments were not used here but may improve image cap-
ture of these more subtle phenotypes. With regards to net-
work class expansion to encompass these events—or, indeed 
for simultaneous measurement of other endpoints—the 
ImageStream platform is capable of multiplexed imaging. 
Additional channels might, therefore, be used to simultane-
ously measure other DNA-damage pathways [e.g., ϒH2AX 
for DNA double-strand breaks (Smart et al. 2011)], or to 
improve the reliability of ground truth image curations 
through use of additional fluorescent markers to differenti-
ate events such as apoptotic from necrotic cells.

Manual scoring of the images for this experiment 
was more challenging than the exemplar images shown 

might suggest. Fundamentally, the acquired images are 
relatively low resolution (i.e., cells occupy ~ 64 × 64 pix-
els) and further image degradation is always present as 
a result of the capture of moving objects by time delay 
integration. The acquired images also represent a cen-
tral, 2-D projection of a 3-D cell object. This means 
that nuclei and micronucleus events may overlap each 
other, or they may lie outside of the plane of optimal 
focus (Rodrigues et al. 2018). These factors all served to 
make ground truth assignments more complicated, even 
for experienced CBMN scorers. Whereas network accu-
racy assessments by confusion matrix provided a more 
representative breakdown of outputs when compared to 
simplistic overall accuracy measures, it is a relatively 
stringent success measure, because any ambiguity in 
human score assignment is not captured. A potential 
advantage of automated network classification approach 

Fig. 5  Other scorable cell 
phenotypes captured by imag-
ing flow cytometry. a Cells 
undergoing mitosis were 
visually apparent according to 
metaphase spread-type nuclear 
fluorescence imagery (red) 
alongside large, brightfield-
delineated cell sizes (grey). b, 
c Cell death events displayed 
shrunken cell sizes in conjunc-
tion with granular brightfield 
and fluorescence imagery. In the 
case of cell death, two distinc-
tive cell phenotypes appeared 
visually separable according 
to cell size and the number, 
size and extent of nuclear foci 
formation (b versus c). Whether 
these observations represented 
distinct apoptotic versus 
necrotic events was unclear 
from the nuclear fluorescence 
and brightfield information 
alone. Scale bars equal 5 
microns (color figure online)
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is, therefore, likely greater consistency—even in error—
than arises from manual scoring.

Regarding image focussing, the ImageStream platform 
offers ‘extended depth of field’ (EDF) technology, whereby 
image deconvolution is used to improve the utility of out of 
focus events through projection onto a single plane (Ortyn 
et al. 2007). Whereas previous studies have shown this tech-
nique can improve accuracy in ‘spot counting’ applications, 
the strategy has been reported less helpful for the provi-
sion of improved CBMN data (Parris et al. 2015; Rodrigues 
2018; Rodrigues et al. 2014a). This was attributed to a slight 
degradation in overall image resolution, compromising dif-
ferentiation of micronucleus events from parent nuclei (Rod-
rigues 2018). On a similar theme, the ImageStream platform 
is also configurable with 20×, 40× or 60× objective lenses. 
Here, image collection was via the ‘standard’, 40× objective 
across all laboratories. This approach was chosen as previous 
work has shown that whilst greater resolution is achievable 
with the 60× objective, focus depth also decreases, reinforc-
ing the out of plane difficulties described above (Rodrigues 
et al. 2018).

Whilst considering the nature and utility of imaging 
flow cytometry data, a relevant comparison is to that pro-
vided by other automated imaging methods, such as slide 
scanning platforms. In addition to the potential for higher 
resolution imaging, here an overlooked advantage comes 
from the ability to use slide-based preparations created by 
cytocentrifugation. This technique causes the flattening and 
spreading of cellular content, presenting nuclear objects 
on a more two dimensional plane (Fitzgerald and Hosking 
1982; Shanholtzer et al. 1982). From a practical perspective, 
however, this also necessitates the consistent preparation of 
high-quality slides with optimal cell densities (Rodrigues 
et al. 2018). Meanwhile, a major advantage of the imag-
ing flow cytometry approach is that single cell image data 
is inherently acquired by the fluidics-based processing of 
individualised cells.

Conclusions

As a platform for the CBMN assay, imaging flow cytometry 
combines the high throughput and multiplexing potential 
of flow cytometry with the image-based validation and 
archiving attributes of automated microscopy. Here we 
demonstrate accurate, automated assay scoring using a 
neural network for data collected in a laboratory wholly 
separate to that in which the algorithm was trained. This 
proves that without any human configuration, the machine 
is able to correctly anticipate the decisions of the expert 
human on unseen images in a new setting. For the first time, 
this suggests the possibility for generalised scoring auto-
mation through dissemination of a pretrained network for 

the ImageStream platform established from ground truth 
agreed by a single, expert group. Such an approach would 
provide the ultimate in terms of standardisation and result 
reliability, but more importantly could enable adoption of 
the assay beyond current practitioners as local expertise in 
scoring and/or image analysis would no longer be required. 
For these reasons, we believe that full development of this 
automated, accessible, inter-laboratory approach would 
represent a truly twenty-first century method with signifi-
cant potential to transform CBMN utility across industry, 
research and clinical domains.
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