We have recently completed a 64-night spectroscopic monitoring campaign at
the Lick Observatory 3-m Shane telescope with the aim of measuring the masses
of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected
masses in the range ~10^6-10^7 M_sun and also the well-studied nearby active
galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including
NGC 5548) showed optical variability of sufficient strength during the
monitoring campaign to allow for a time lag to be measured between the
continuum fluctuations and the response to these fluctuations in the broad
Hbeta emission. We present here the light curves for the objects in this sample
and the subsequent Hbeta time lags for the nine objects where these
measurements were possible. The Hbeta lag time is directly related to the size
of the broad-line region, and by combining the lag time with the measured width
of the Hbeta emission line in the variable part of the spectrum, we determine
the virial mass of the central supermassive black hole in these nine AGNs. The
absolute calibration of the black hole masses is based on the normalization
derived by Onken et al. We also examine the time lag response as a function of
velocity across the Hbeta line profile for six of the AGNs. The analysis of
four leads to ambiguous results with relatively flat time lags as a function of
velocity. However, SBS 1116+583A exhibits a symmetric time lag response around
the line center reminiscent of simple models for circularly orbiting broad-line
region (BLR) clouds, and Arp 151 shows an asymmetric profile that is most
easily explained by a simple gravitational infall model. Further investigation
will be necessary to fully understand the constraints placed on physical models
of the BLR by the velocity-resolved response in these objects.Comment: 24 pages, 16 figures and 13 tables, submitted to Ap