18 research outputs found

    A comparison of results of empirical studies of supplementary search techniques and recommendations in review methodology handbooks: a methodological review

    Get PDF
    Background The purpose and contribution of supplementary search methods in systematic reviews is increasingly acknowledged. Numerous studies have demonstrated their potential in identifying studies or study data that would have been missed by bibliographic database searching alone. What is less certain is how supplementary search methods actually work, how they are applied, and the consequent advantages, disadvantages and resource implications of each search method. The aim of this study is to compare current practice in using supplementary search methods with methodological guidance. Methods Four methodological handbooks in informing systematic review practice in the UK were read and audited to establish current methodological guidance. Studies evaluating the use of supplementary search methods were identified by searching five bibliographic databases. Studies were included if they (1) reported practical application of a supplementary search method (descriptive) or (2) examined the utility of a supplementary search method (analytical) or (3) identified/explored factors that impact on the utility of a supplementary method, when applied in practice. Results Thirty-five studies were included in this review in addition to the four methodological handbooks. Studies were published between 1989 and 2016, and dates of publication of the handbooks ranged from 1994 to 2014. Five supplementary search methods were reviewed: contacting study authors, citation chasing, handsearching, searching trial registers and web searching. Conclusions There is reasonable consistency between recommended best practice (handbooks) and current practice (methodological studies) as it relates to the application of supplementary search methods. The methodological studies provide useful information on the effectiveness of the supplementary search methods, often seeking to evaluate aspects of the method to improve effectiveness or efficiency. In this way, the studies advance the understanding of the supplementary search methods. Further research is required, however, so that a rational choice can be made about which supplementary search strategies should be used, and when

    Sports medicine in the Netherlands

    No full text

    Using Room Temperature Current Noise To Characterize Single Molecular Spectra

    Get PDF
    We propose a way to use room temperature random telegraph noise to characterize single molecules adsorbed on a backgated silicon field-effect transistor. The overlap of molecule and silicon electronic wave functions generates a set of trap levels that impose their unique scattering signatures on the voltage-dependent current noise spectrum. Our results are based on numerical modeling of the current noise, obtained by coupling a density functional treatment of the trap placement within the silicon band gap, a quantum kinetic treatment of the output current, and a Monte Carlo evaluation of the trap occupancy under resonance. As an illustrative example, we show how we can extract molecule-specific “fingerprints” of four benzene-based molecules directly from a frequency–voltage colormap of the noise statistics. We argue that such a colormap carries detailed information about the trap dynamics at the Fermi energy, including the presence of correlated interactions, observed experimentally in backgated carbon nanotubes

    Discovery of carbon radio recombination lines in absorption towards Cygnus A

    Get PDF
    We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33–57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10−4, a line width of 10 km s−1 and a velocity of +4 km s−1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ∼ 110 K and density ne ∼ 0.06 cm−3. These properties imply that the observed carbon α absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10−4 for a 4 km s−1 channel width. Radio recombination lines associated with Cygnus A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 × 10−4 for the peak optical depth of these lines for a 4 km s−1 channel width

    Discovery of carbon radio recombination lines in absorption towards Cygnus A

    Get PDF
    We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33–57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10−4, a line width of 10 km s−1 and a velocity of +4 km s−1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ∼ 110 K and density ne ∼ 0.06 cm−3. These properties imply that the observed carbon α absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10−4 for a 4 km s−1 channel width. Radio recombination lines associated with Cygnus A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 × 10−4 for the peak optical depth of these lines for a 4 km s−1 channel width
    corecore