3,666 research outputs found

    Complete Break Up of Ortho Positronium (Ps)- Hydrogenic ion System

    Full text link
    The dynamics of the complete breakup process in an Ortho Ps - He+ system including electron loss to the continuum (ELC) is studied where both the projectile and the target get ionized. The process is essentially a four body problem and the present model takes account of the two centre effect on the electron ejected from the Ps atom which is crucial for a proper description of the ELC phenomena. The calculations are performed in the framework of Coulomb Distorted Eikonal Approximation. The exchange effect between the target and the projectile electron is taken into account in a consistent manner. The proper asymptotic 3-body boundary condition for this ionization process is also satisfied in the present model. A distinct broad ELC peak is noted in the fully differential cross sections (5DCS) for the Ps electron corroborating qualitatively the experiment for the Ps - He system. Both the dynamics of the ELC from the Ps and the ejected electron from the target He+ in the FDCS are studied using coplanar geometry. Interesting features are noted in the FDCS for both the electrons belonging to the target and the projectile.Comment: 14 pages,7 figure

    Chiral singlet superconductivity in the weakly correlated metal LaPt3P

    Get PDF
    Chiral superconductors are novel topological materials with finite angular momentum Cooper pairs circulating around a unique chiral axis, thereby spontaneously breaking time-reversal symmetry. They are rather scarce and usually feature triplet pairing: a canonical example is the chiral p-wave state realized in the A-phase of superfluid He3. Chiral triplet superconductors are, however, topologically fragile with the corresponding gapless boundary modes only weakly protected against symmetry-preserving perturbations in contrast to their singlet counterparts. Using muon spin relaxation measurements, here we report that the weakly correlated pnictide compound LaPt3P has the two key features of a chiral superconductor: spontaneous magnetic fields inside the superconducting state indicating broken time-reversal symmetry and low temperature linear behaviour in the superfluid density indicating line nodes in the order parameter. Using symmetry analysis, first principles band structure calculation and mean-field theory, we unambiguously establish that the superconducting ground state of LaPt3P is a chiral d-wave singlet

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    Exploring novel correlations in trilepton channels at the LHC for the minimal supersymmetric inverse seesaw model

    Full text link
    We investigate signatures of the minimal supersymmetric inverse seesaw model at the large hadron collider (LHC) with three isolated leptons and large missing energy (3\ell + \mET or 2\ell + 1\tau + \mET, with \ell=e,\mu) in the final state. This signal has its origin in the decay of chargino-neutralino (\chpm1\ntrl2) pair, produced in pp collisions. The two body decays of the lighter chargino into a charged lepton and a singlet sneutrino has a characteristic decay pattern which is correlated with the observed large atmospheric neutrino mixing angle. This correlation is potentially observable at the LHC by looking at the ratios of cross sections of the trilepton + \mET channels in certain flavour specific modes. We show that even after considering possible leading standard model backgrounds these final states can lead to reasonable discovery significance at the LHC with both 7 TeV and 14 TeV center-of-mass energy.Comment: 28 pages, 9 .eps figures. 3 new figures and discussions on LHC observables added, minor modifications in text and in the abstract, 23 new references added, matches with the published version in JHE

    Magnetic properties of X-Pt (X=Fe,Co,Ni) alloy systems

    Full text link
    We have studied the electronic and magnetic properties of Fe-Pt, Co-Pt and Ni-Pt alloy systems in ordered and disordered phases. The influence of various exchange-correlation functionals on values of equilibrium lattice parameters and magnetic moments in ordered Fe-Pt, Co-Pt and Ni-Pt alloys have been studied using linearized muffin-tin orbital method. The electronic structure calculations for the disordered alloys have been carried out using augmented space recursion technique in the framework of tight binding linearized muffin-tin orbital method. The effect of short range order has also been studied in the disordered phase of these systems. The results show good agreements with available experimental values.Comment: 21 pages, 4 eps figures, accepted for publication in Journal of Physics Condensed Matte

    Accelerated expansion from structure formation

    Get PDF
    We discuss the physics of backreaction-driven accelerated expansion. Using the exact equations for the behaviour of averages in dust universes, we explain how large-scale smoothness does not imply that the effect of inhomogeneity and anisotropy on the expansion rate is small. We demonstrate with an analytical toy model how gravitational collapse can lead to acceleration. We find that the conjecture of the accelerated expansion being due to structure formation is in agreement with the general observational picture of structures in the universe, and more quantitative work is needed to make a detailed comparison.Comment: 44 pages, 1 figure. Expanded treatment of topics from the Gravity Research Foundation contest essay astro-ph/0605632. v2: Added references, clarified wordings. v3: Published version. Minor changes and corrections, added a referenc

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Leishmania infantum Amastigotes Enhance HIV-1 Production in Cocultures of Human Dendritic Cells and CD4+ T Cells by Inducing Secretion of IL-6 and TNF-α

    Get PDF
    Visceral leishmaniasis (VL) is a potentially deadly parasitic disease afflicting millions worldwide. Although itself an important infectious illness, VL has also emerged as an opportunistic disease among patients infected with HIV-1. This is partly due to the increasing overlap between urban regions of high HIV-1 transmission and areas where Leishmania is endemic. Furthermore, VL increases the development and clinical progression of AIDS-related diseases. Conversely, HIV-1-infected individuals are at greater risk of developing VL or suffering relapse. Finally, HIV-1 and Leishmania can both productively infect cells of the macrophage-dendritic cell lineage, resulting in a cumulative deficiency of the immune response. We therefore studied the effect of Leishmania infantum on HIV-1 production when dendritic cells (DCs) are cocultured with autologous CD4+ T cells. We show that amastigotes promote virus replication in both DCs and lymphocytes, due to a parasite-mediated production of soluble factors by DCs. Micro-beads array analyses indicate that Leishmania infantum amastigotes infection induces a higher secretion of several cytokines in these cells, and use of specific neutralizing antibodies revealed that the Leishmania-induced increase in HIV-1 replication is due to IL-6 and TNF-α. These findings suggest that Leishmania's presence within DC/T-cell conjugates leads to an enhanced HIV-1 production
    corecore