387 research outputs found

    Spatially Resolved [FeII] 1.64 \mu m Emission in NGC 5135. Clues for Understanding the Origin of the Hard X-rays in Luminous Infrared Galaxies

    Get PDF
    Spatially resolved near-IR and X-ray imaging of the central region of the Luminous Infrared Galaxy NGC 5135 is presented. The kinematical signatures of strong outflows are detected in the [FeII]1.64 \mu m emission line in a compact region at 0.9 kpc from the nucleus. The derived mechanical energy release is consistent with a supernova rate of 0.05-0.1 yr1^{-1}. The apex of the outflowing gas spatially coincides with the strongest [FeII] emission peak and with the dominant component of the extranuclear hard X-ray emission. All these features provide evidence for a plausible direct physical link between supernova-driven outflows and the hard X-ray emitting gas in a LIRG. This result is consistent with model predictions of starbursts concentrated in small volumes and with high thermalization efficiencies. A single high-mass X-ray binary (HMXB) as the major source of the hard X-ray emission although not favoured, cannot be ruled out. Outside the AGN, the hard X-ray emission in NGC 5135 appears to be dominated by the hot ISM produced by supernova explosions in a compact star-forming region, and not by the emission due to HMXB. If this scenario is common to U/LIRGs, the hard X-rays would only trace the most compact (< 100 pc) regions with high supernova and star formation densities, therefore a lower limit to their integrated star formation. The SFR derived in NGC 5135 based on its hard X-ray luminosity is a factor of two and four lower than the values obtained from the 24 \mu m and soft X-ray luminosities, respectively.Comment: Accepted for Publication in ApJ, 18 pages, 2 figure

    Orientation and symmetries of Alexandrov spaces with applications in positive curvature

    Get PDF
    We develop two new tools for use in Alexandrov geometry: a theory of ramified orientable double covers and a particularly useful version of the Slice Theorem for actions of compact Lie groups. These tools are applied to the classification of compact, positively curved Alexandrov spaces with maximal symmetry rank.Comment: 34 pages. Simplified proofs throughout and a new proof of the Slice Theorem, correcting omissions in the previous versio

    A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling.

    Get PDF
    Mechanisms that integrate the metabolic state of a cell with regulatory pathways are necessary to maintain cellular homeostasis. Endogenous, intrinsically reactive metabolites can form functional, covalent modifications on proteins without the aid of enzymes1,2, and regulate cellular functions such as metabolism3-5 and transcription6. An important 'sensor' protein that captures specific metabolic information and transforms it into an appropriate response is KEAP1, which contains reactive cysteine residues that collectively act as an electrophile sensor tuned to respond to reactive species resulting from endogenous and xenobiotic molecules. Covalent modification of KEAP1 results in reduced ubiquitination and the accumulation of NRF27,8, which then initiates the transcription of cytoprotective genes at antioxidant-response element loci. Here we identify a small-molecule inhibitor of the glycolytic enzyme PGK1, and reveal a direct link between glycolysis and NRF2 signalling. Inhibition of PGK1 results in accumulation of the reactive metabolite methylglyoxal, which selectively modifies KEAP1 to form a methylimidazole crosslink between proximal cysteine and arginine residues (MICA). This posttranslational modification results in the dimerization of KEAP1, the accumulation of NRF2 and activation of the NRF2 transcriptional program. These results demonstrate the existence of direct inter-pathway communication between glycolysis and the KEAP1-NRF2 transcriptional axis, provide insight into the metabolic regulation of the cellular stress response, and suggest a therapeutic strategy for controlling the cytoprotective antioxidant response in several human diseases

    Associated molecular and atomic clouds with X-ray shell of superbubble 30 Doradus C in the LMC

    Full text link
    30 Doradus C is a superbubble which emits the brightest nonthermal X- and TeV gamma-rays in the Local Group. In order to explore detailed connection between the high energy radiation and the interstellar medium, we have carried out new CO and HI observations using the Atacama Large Millimeter//Submillimeter Array (ALMA), Atacama Submillimeter Telescope Experiment, and the Australia Telescope Compact Array with resolutions of up to 3 pc. The ALMA data of 12^{12}CO(JJ = 1-0) emission revealed 23 molecular clouds with the typical diameters of \sim6-12 pc and masses of \sim600-10000 MM_{\odot}. The comparison with the X-rays of XMMXMM-NewtonNewton at \sim3 pc resolution shows that X-rays are enhanced toward these clouds. The CO data were combined with the HI to estimate the total interstellar protons. Comparison of the interstellar proton column density and the X-rays revealed that the X-rays are enhanced with the total proton. These are most likely due to the shock-cloud interaction modeled by the magnetohydrodynamical simulations (Inoue et al. 2012, ApJ, 744, 71). Further, we note a trend that the X-ray photon index varies with distance from the center of the high-mass star cluster, suggesting that the cosmic-ray electrons are accelerated by one or multiple supernovae in the cluster. Based on these results we discuss the role of the interstellar medium in cosmic-ray particle acceleration.Comment: 20 pages, 14 figures, 3 tables, accepted for publication in The Astrophysical Journa

    LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair

    Get PDF
    Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger

    Polarization constraints on the X-ray corona in Seyfert Galaxies: MCG-05-23-16

    Full text link
    We report on the first observation of a radio-quiet Active Galactic Nucleus (AGN) using polarized X-rays: the Seyfert 1.9 galaxy MCG-05-23-16. This source was pointed with the Imaging X-ray Polarimetry Explorer (IXPE) starting on May 14, 2022 for a net observing time of 486 ks, simultaneously with XMM-Newton (58 ks) and NuSTAR (83 ks). A polarization degree smaller than Π<4.7%\Pi<4.7\% (at the 99% c.l.) is derived in the 2-8 keV energy range, where emission is dominated by the primary component ascribed to the hot corona. The broad-band spectrum, inferred from a simultaneous fit to the IXPE, NuSTAR, and XMM-Newton data, is well reproduced by a power law with photon index Γ=1.85±0.01\Gamma=1.85\pm0.01 and a high-energy cutoff EC=120±15E_{\rm C}=120\pm15 keV. A comparison with Monte Carlo simulations shows that a lamp-post and a conical geometry of the corona are consistent with the observed upper limit, a slab geometry is allowed only if the inclination angle of the system is less than 50^{\circ}.Comment: 7 pages, 3 figures, 1 table. Submitted to MNRAS Letter

    Complex variations of X-ray polarization in the X-ray pulsar LS V +44 17/RX J0440.9+4431

    Full text link
    We report on \ixpe observations of the Be-transient X-ray pulsar LS V +44 17/RX J0440.9+4431 at two luminosity levels during the giant outburst in January--February 2023. Considering the observed spectral variability and changes in the pulse profiles, the source was likely caught in super- and sub-critical states with significantly different emission region geometry, associated with the presence of accretion columns and hot spots, respectively. We focus here on the pulse-phase resolved polarimetric analysis and find that the observed dependencies of the polarization degree and polarization angle (PA) on pulse phase are indeed drastically different for the two observations. The observed differences, if interpreted within the framework of the rotating vector model (RVM), imply dramatic variations of the spin axis inclination and the position angle and the magnetic colatitude by tens of degrees within just a few days separating the observations. We suggest that the apparent changes in the observed PA phase dependence are predominantly related to the presence of a polarized unpulsed component in addition to the polarized radiation associated with the pulsar itself. We show that the observed PA phase dependence in both observations can then be explained with a single set of RVM parameters defining the pulsar's geometry. We also suggest that the additional polarized component is likely produced by scattering of the pulsar radiation off the equatorial disk wind.Comment: 9 pages, 5 figures, submitted to A&

    Accretion geometry of the neutron star low mass X-ray binary Cyg X-2 from X-ray polarization measurements

    Full text link
    We report spectro-polarimetric results of an observational campaign of the bright neutron star low-mass X-ray binary Cyg X-2 simultaneously observed by IXPE, NICER and INTEGRAL. Consistently with previous results, the broad-band spectrum is characterized by a lower-energy component, attributed to the accretion disc with kTinkT_{\rm in} \approx 1 keV, plus unsaturated Comptonization in thermal plasma with temperature kTe=3kT_{\rm e} = 3 keV and optical depth τ4\tau \approx 4, assuming a slab geometry. We measure the polarization degree in the 2-8 keV band P=1.8±0.3P=1.8 \pm 0.3 per cent and polarization angle ϕ=140±4\phi = 140^{\circ} \pm 4^{\circ}, consistent with the previous X-ray polarimetric measurements by OSO-8 as well as with the direction of the radio jet which was earlier observed from the source. While polarization of the disc spectral component is poorly constrained with the IXPE data, the Comptonized emission has a polarization degree P=4.0±0.7P =4.0 \pm 0.7 per cent and a polarization angle aligned with the radio jet. Our results strongly favour a spreading layer at the neutron star surface as the main source of the polarization signal. However, we cannot exclude a significant contribution from reflection off the accretion disc, as indicated by the presence of the iron fluorescence line.Comment: 10 pages, 7 figures, accepted for publication in MNRA

    IXPE observation confirms a high spin in the accreting black hole 4U 1957+115

    Full text link
    We present the results of the first X-ray polarimetric observation of the low-mass X-ray binary 4U 1957+115, performed with the Imaging X-ray Polarimetry Explorer in May 2023. The binary system has been in a high-soft spectral state since its discovery and is thought to host a black hole. The \sim571 ks observation reveals a linear polarisation degree of 1.9%±0.6%1.9\% \pm 0.6\% and a polarisation angle of 41.8±7.9-41^\circ.8 \pm 7^\circ.9 in the 2-8 keV energy range. Spectral modelling is consistent with the dominant contribution coming from the standard accretion disc, while polarimetric data suggest a significant role of returning radiation: photons that are bent by strong gravity effects and forced to return to the disc surface, where they can be reflected before eventually reaching the observer. In this setting, we find that models with a black hole spin lower than 0.96 and an inclination lower than 5050^\circ are disfavoured.Comment: 12 pages, 10 figures, 2 tables, accepted for publication in A&
    corecore