427 research outputs found
The Influence of Oxygen Fugacity and Cooling Rate on the Crystallization of Ca-Al Inclusions from Allende
Although there appears to be general agreement that some coarse-grained Ca-Al-rich inclusions (CAIs) from Allende passed through a molten or partially molten stage in their evolution, there are several competing hypotheses to account for the formation of the liquid phase in CAIs (e.g., 1-4). Studies of the phase equilibria of CAI compositions can help distinguish between these mechanisms
for generating liquids in CAIs
An Experimental Study of Metallic Diffusion and Phase Equilibria in Fremdlinge
Fremdlinge are opaque assemblages within CAis that are mainly composed of NiFe metal, V-magnetite and µm-sized RuOs nuggets. The prevailing scenario for their origin includes condensation, aggregation and equilibration at low T (≾ 600°C); they are then thought to be introduced into CAis at high T, followed by rapid cooling, thereby preserving the textures and assemblages from the pre-CAl, low T histories (Armstrong et al., 1985; Armstrong et al., 1987). A constraint on cooling rates of Fremdlinge comes from sharp contacts observed between RuOs nuggets and NiFe
metals that enclose them. To determine the length of time that these contacts could have been held at high T, thin-film diffusion experiments were conducted with an
electroplated Ru film on Ni. Samples were annealed at 1400, 1200, 1000 and 800°C for 0.3-137 hours. Measured Ru profiles in Ni were consistent with the following Arrhenius expression: D(cm^2/sec) = 0.0050exp(-2.3 x 10^(12)/RT) (T in K, R in Cgs units). Based on these data, we calculate that cooling rates of ≳ 10^5C/hr are necessary to preserve sharp contacts between RuOs and NiFe metals if they experienced the T of CAl melting (~ 1400°C) (Stolper and Paque, 1986). We consider this rate unreasonable in light of cooling rates inferred from experimental studies of the silicate portions of CAis (10^(-1) to 10^2°C/hr) (Stolper and Paque, 1986)
Dynamic and physical clustering of gene expression during epidermal barrier formation in differentiating keratinocytes.
The mammalian epidermis is a continually renewing structure that provides the interface between the organism and an innately hostile environment. The keratinocyte is its principal cell. Keratinocyte proteins form a physical epithelial barrier, protect against microbial damage, and prepare immune responses to danger. Epithelial immunity is disordered in many common diseases and disordered epithelial differentiation underlies many cancers. In order to identify the genes that mediate epithelial development we used a tissue model of the skin derived from primary human keratinocytes. We measured global gene expression in triplicate at five times over the ten days that the keratinocytes took to fully differentiate. We identified 1282 gene transcripts that significantly changed during differentiation (false discovery rate <0.01%). We robustly grouped these transcripts by K-means clustering into modules with distinct temporal expression patterns, shared regulatory motifs, and biological functions. We found a striking cluster of late expressed genes that form the structural and innate immune defences of the epithelial barrier. Gene Ontology analyses showed that undifferentiated keratinocytes were characterised by genes for motility and the adaptive immune response. We systematically identified calcium-binding genes, which may operate with the epidermal calcium gradient to control keratinocyte division during skin repair. The results provide multiple novel insights into keratinocyte biology, in particular providing a comprehensive list of known and previously unrecognised major components of the epidermal barrier. The findings provide a reference for subsequent understanding of how the barrier functions in health and disease
Shock wave apparatus for studying minerals at high pressure and impact phenomena on planetary surfaces
Shock wave and experimental impact phenomena research on geological and planetary materials is being carried out using two propellant (18 and 40 mm) guns (up to 2.5 km/sec) and a two‐stage light gas gun (up to 7 km/sec). Equation of state measurements on samples initially at room temperature and at low and high temperatures are being conducted using the 40 mm propellant apparatus in conjunction with Helmholtz coils, and radiative detectors and, in the case of the light gas gun, with streak cameras. The 18 mm propellant gun is used for recovery experiments on minerals, impact on cryogenic targets, and radiative post‐shock temperature measurements
Formation temperatures of thermogenic and biogenic methane
Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models
The science of clinical practice: disease diagnosis or patient prognosis? Evidence about "what is likely to happen" should shape clinical practice.
BACKGROUND: Diagnosis is the traditional basis for decision-making in clinical practice. Evidence is often lacking about future benefits and harms of these decisions for patients diagnosed with and without disease. We propose that a model of clinical practice focused on patient prognosis and predicting the likelihood of future outcomes may be more useful. DISCUSSION: Disease diagnosis can provide crucial information for clinical decisions that influence outcome in serious acute illness. However, the central role of diagnosis in clinical practice is challenged by evidence that it does not always benefit patients and that factors other than disease are important in determining patient outcome. The concept of disease as a dichotomous 'yes' or 'no' is challenged by the frequent use of diagnostic indicators with continuous distributions, such as blood sugar, which are better understood as contributing information about the probability of a patient's future outcome. Moreover, many illnesses, such as chronic fatigue, cannot usefully be labelled from a disease-diagnosis perspective. In such cases, a prognostic model provides an alternative framework for clinical practice that extends beyond disease and diagnosis and incorporates a wide range of information to predict future patient outcomes and to guide decisions to improve them. Such information embraces non-disease factors and genetic and other biomarkers which influence outcome. SUMMARY: Patient prognosis can provide the framework for modern clinical practice to integrate information from the expanding biological, social, and clinical database for more effective and efficient care
Methane Clumped Isotopes: Progress and Potential for a New Isotopic Tracer
The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding petroleum systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. In general, clumped isotope measurements indicate plausible formation temperatures for abiotic, thermogenic, and microbial methane in many geological environments, which is encouraging for the further development of this measurement as a geothermometer, and as a tracer for the source of natural gas reservoirs and emissions. We also highlight, however, instances where clumped isotope derived temperatures are higher than expected, and discuss possible factors that could distort equilibrium formation temperature signals. In microbial methane from freshwater ecosystems, in particular, clumped isotope values appear to be controlled by kinetic effects, and may ultimately be useful to study methanogen metabolism
APXS of First Rocks Encountered by Curiosity in Gale Crater: Geochemical Diversity and Volatile Element (K and ZN) Enrichment
The Alpha Particle X-ray spectrometer (APXS) on the Curiosity rover in Gale Crater [1] is the 4th such instrument to have landed on Mars [2]. Along the rover's traverse down-section toward Glenelg (through sol 102), the APXS has examined four rocks and one soil [3]. Gale rocks are geochemically diverse and expand the range of Martian rock compositions to include high volatile and alkali contents (up to 3.0 wt% K2O) with high Fe and Mn (up to 29.2% FeO*)
Depth selective Mossbauer spectroscopy: Analysis and simulation of 6.4 keV and 14.4 keV spectra obtained from rocks at Gusev Crater, Mars, and layered laboratory samples
The miniaturized Mössbauer spectrometer (MIMOS) II Mössbauer spectrometers on the Mars Exploration Rovers (MER) simultaneously obtained 6.4 keV and 14.4 keV Mössbauer spectra from rock and soil targets. Because photons with lower energy have a shallower penetration depth, 6.4 keV spectra contain more mineralogical information about the near-surface region of a sample than do 14.4 keV spectra. The influence of surface layers of varying composition and thickness on Mössbauer spectra was investigated by Monte Carlo simulation and by measurement using a copy of the MER MIMOS II instrument and samples with one or two layers of known thicknesses. Thin sections of minerals or metallic Fe foil on top of a thick mineral sample were used to produce samples with thin layers of known thickness on a thick substrate. Monte Carlo simulation of MER spectra obtained on the rock Mazatzal, which displays a coating on a basaltic substrate, and other Adirondack Class rocks results in a calculated thickness of 10 micrometer for the Mazatzal surface layer. The 6.4 keV spectra obtained on Adirondack Class rocks, on laboratory samples, and in Monte Carlo calculations show an apparent olivine enrichment which is not related to any observable surface layer
- …