312 research outputs found

    The evolution of Great Apes has shaped the functional enhancers' landscape in human embryonic stem cells

    Get PDF
    High-throughput functional assays of enhancer activity have recently enabled the genome-scale definition of molecular, structural, and biochemical features of these genomic regulatory regions. To infer the evolutionary origin of DNA sequences operating as functional enhancers in human embryonic stem cells (hESC), we examined the patterns of evolutionary conservation and divergence in the genome-wide functional enhancers' landscape of hESC. We show that a prominent majority (up to 94%) of DNA sequences identified in hESC as functional enhancers are conserved in humans and our closest evolutionary relatives, Chimpanzee and Bonobo. More than 91% of functional enhancers that are highly conserved in both Chimpanzee and Bonobo, are conserved among other Great Apes and >75% are conserved in the Rhesus genome. In striking contrast, <5% of DNA sequences operating in hESC as functional enhancers are conserved in rodents. Conserved in primates enhancers' sequences are complemented by 1619 sequences of enhancers that are specific to humans. Enhancers that harbor human-specific sequences appear enriched among the invariant enhancer module maintaining activity in different pluripotent states and these regions are associated with pluripotency- and embryonic-lineage-related genes. However, functional enhancers make up only a minority of all conserved in primates or human-specific transcription factor binding sites. Our analyses revealed that sequences that are conserved during ~8 million years of primate evolution dominate the genomic landscape of functional enhancers in both primed and naïve hESC. Collectively, these observations revealed thousands of evolutionarily conserved sequences that function as a core regulatory network in human embryonic stem cells which has recently undergone further extension after divergence of modern humans from our closest relatives, Chimpanzee and Bonobo

    Comparative Emissions Testing of Vehicles Aged on E0, E15 and E20 Fuels

    Get PDF
    The Energy Independence and Security Act passed into law in December 2007 has mandated the use of 36 billion ethanol equivalent gallons per year of renewable fuel by 2022. A primary pathway to achieve this national goal is to increase the amount of ethanol blended into gasoline. This study is part of a multi-laboratory test program coordinated by DOE to evaluate the effect of higher ethanol blends on vehicle exhaust emissions over the lifetime of the vehicle

    Dense Antihydrogen: Its Production and Storage to Envision Antimatter Propulsion

    Full text link
    We discuss the possibility that dense antihydrogen could provide a path towards a mechanism for a deep space propulsion system. We concentrate at first, as an example, on Bose-Einstein Condensate (BEC) antihydrogen. In a Bose-Einstein Condensate, matter (or antimatter) is in a coherent state analogous to photons in a laser beam, and individual atoms lose their independent identity. This allows many atoms to be stored in a small volume. In the context of recent advances in producing and controlling BECs, as well as in making antihydrogen, this could potentially provide a revolutionary path towards the efficient storage of large quantities of antimatter, perhaps eventually as a cluster or solid.Comment: 12 pages, 3 figure

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    Survivin expression in oral squamous cell carcinoma

    Get PDF
    A series of 110 cases of oral squamous cell carcinoma (SCC) together with six lymph node and one distant metastatic lesions was analysed for expression of survivin, a recent apoptosis inhibitor, by immunohistochemistry and Western blotting. In total, 91 cases (82.7%) of carcinoma and all metastasis (seven cases, 100%) were positive for survivin expression, with weighted survivin scores ranging from 1 to 4. In contrast, normal oral epithelium did not express survivin. There was no significant correlation between survivin expression and age, sex, tumour size, the presence of lymph node and distant metastases. Survivin expression was increased in poorly differentiated tumours, even if differences were not statistically significant. In contrast, when analysed for prognostic significance, patients with low survivin expression had statistically significant better survival rates than the group with high survivin expression (P < 0.05). These data suggest that survivin expression may identify cases of oral SCC with more aggressive and invasive phenotype

    Targeted glycoproteomic identification of cancer cell glycosylation

    Get PDF
    GalMBP is a fragment of serum mannose-binding protein that has been modified to create a probe for galactose-containing ligands. Glycan array screening demonstrated that the carbohydrate-recognition domain of GalMBP selectively binds common groups of tumor-associated glycans, including Lewis-type structures and T antigen, suggesting that engineered glycan-binding proteins such as GalMBP represent novel tools for the characterization of glycoproteins bearing tumor-associated glycans. Blotting of cell extracts and membranes from MCF7 breast cancer cells with radiolabeled GalMBP was used to demonstrate that it binds to a selected set of high molecular weight glycoproteins that could be purified from MCF7 cells on an affinity column constructed with GalMBP. Proteomic and glycomic analysis of these glycoproteins by mass spectrometry showed that they are forms of CD98hc that bear glycans displaying heavily fucosylated termini, including Lewisx and Lewisy structures. The pool of ligands was found to include the target ligands for anti-CD15 antibodies, which are commonly used to detect Lewisx antigen on tumors, and for the endothelial scavenger receptor C-type lectin, which may be involved in tumor metastasis through interactions with this antigen. A survey of additional breast cancer cell lines reveals that there is wide variation in the types of glycosylation that lead to binding of GalMBP. Higher levels of binding are associated either with the presence of outer-arm fucosylated structures carried on a variety of different cell surface glycoproteins or with the presence of high levels of the mucin MUC1 bearing T antigen

    A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy

    Get PDF
    Many men develop a rising PSA after initial therapy for prostate cancer. While some of these men will develop a local or metastatic recurrence that warrants further therapy, others will have no evidence of disease progression. We hypothesized that an expression biomarker panel can predict which men with a rising PSA would benefit from further therapy.A case-control design was used to test the association of gene expression with outcome. Systemic (SYS) progression cases were men post-prostatectomy who developed systemic progression within 5 years after PSA recurrence. PSA progression controls were matched men post-prostatectomy with PSA recurrence but no evidence of clinical progression within 5 years. Using expression arrays optimized for paraffin-embedded tissue RNA, 1021 cancer-related genes were evaluated-including 570 genes implicated in prostate cancer progression. Genes from 8 previously reported marker panels were included. A systemic progression model containing 17 genes was developed. This model generated an AUC of 0.88 (95% CI: 0.84-0.92). Similar AUCs were generated using 3 previously reported panels. In secondary analyses, the model predicted the endpoints of prostate cancer death (in SYS cases) and systemic progression beyond 5 years (in PSA controls) with hazard ratios 2.5 and 4.7, respectively (log-rank p-values of 0.0007 and 0.0005). Genes mapped to 8q24 were significantly enriched in the model.Specific gene expression patterns are significantly associated with systemic progression after PSA recurrence. The measurement of gene expression pattern may be useful for determining which men may benefit from additional therapy after PSA recurrence
    corecore