12 research outputs found
Development of air quality boxes based on low-cost sensor technology for ambient air quality monitoring
Analyses of the relationships between climate, air substances and health usually concentrate on urban environments because of increased urban temperatures, high levels of air pollution and the exposure of a large number of people compared to rural environments. Ongoing urbanization, demographic ageing and climate change lead to an increased vulnerability with respect to climate-related extremes and air pollution. However, systematic analyses of the specific local-scale characteristics of health-relevant atmospheric conditions and compositions in urban environments are still scarce because of the lack of high-resolution monitoring networks. In recent years, low-cost sensors (LCS) became available, which potentially provide the opportunity to monitor atmospheric conditions with a high spatial resolution and which allow monitoring directly at vulnerable people. In this study, we present the atmospheric exposure low-cost monitoring (AELCM) system for several air substances like ozone, nitrogen dioxide, carbon monoxide and particulate matter, as well as meteorological variables developed by our research group. The measurement equipment is calibrated using multiple linear regression and extensively tested based on a field evaluation approach at an urban background site using the high-quality measurement unit, the atmospheric exposure monitoring station (AEMS) for meteorology and air substances, of our research group. The field evaluation took place over a time span of 4 to 8 months. The electrochemical ozone sensors (SPEC DGS-O3: R(2): 0.71â0.95, RMSE: 3.31â7.79 ppb) and particulate matter sensors (SPS30 PM1/PM2.5: R(2): 0.96â0.97/0.90â0.94, RMSE: 0.77â1.07 ”g/m(3)/1.27â1.96 ”g/m(3)) showed the best performances at the urban background site, while the other sensors underperformed tremendously (SPEC DGS-NO2, SPEC DGS-CO, MQ131, MiCS-2714 and MiCS-4514). The results of our study show that meaningful local-scale measurements are possible with the former sensors deployed in an AELCM unit
A large-scale genome-wide association study meta-analysis of cannabis use disorder
Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50â70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20â916 case samples, 363â116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07â1·15, p=1·84âĂâ10â9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86â0·93, p=6·46âĂâ10â9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50âĂâ10â21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.Peer reviewe
Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies
First published: 16 February 202
Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders
Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest genome-wide association study to date of DSM-IV-diagnosed AD. Genome-wide data on 14,904 individuals with AD and 37,944 controls from 28 case-control and family-based studies were meta-analyzed, stratified by genetic ancestry (European, n = 46,568; African, n = 6,280). Independent, genome-wide significant effects of different ADH1B variants were identified in European (rs1229984; P = 9.8 x 10(-13)) and African ancestries (rs2066702; P = 2.2 x 10(-9)). Significant genetic correlations were observed with 17 phenotypes, including schizophrenia, attention deficit-hyperactivity disorder, depression, and use of cigarettes and cannabis. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and nonpathological drinking behaviors.Peer reviewe
Development of Air Quality Boxes Based on Low-Cost Sensor Technology for Ambient Air Quality Monitoring
Analyses of the relationships between climate, air substances and health usually concentrate on urban environments because of increased urban temperatures, high levels of air pollution and the exposure of a large number of people compared to rural environments. Ongoing urbanization, demographic ageing and climate change lead to an increased vulnerability with respect to climate-related extremes and air pollution. However, systematic analyses of the specific local-scale characteristics of health-relevant atmospheric conditions and compositions in urban environments are still scarce because of the lack of high-resolution monitoring networks. In recent years, low-cost sensors (LCS) became available, which potentially provide the opportunity to monitor atmospheric conditions with a high spatial resolution and which allow monitoring directly at vulnerable people. In this study, we present the atmospheric exposure low-cost monitoring (AELCM) system for several air substances like ozone, nitrogen dioxide, carbon monoxide and particulate matter, as well as meteorological variables developed by our research group. The measurement equipment is calibrated using multiple linear regression and extensively tested based on a field evaluation approach at an urban background site using the high-quality measurement unit, the atmospheric exposure monitoring station (AEMS) for meteorology and air substances, of our research group. The field evaluation took place over a time span of 4 to 8 months. The electrochemical ozone sensors (SPEC DGS-O3: R2: 0.71–0.95, RMSE: 3.31–7.79 ppb) and particulate matter sensors (SPS30 PM1/PM2.5: R2: 0.96–0.97/0.90–0.94, RMSE: 0.77–1.07 µg/m3/1.27–1.96 µg/m3) showed the best performances at the urban background site, while the other sensors underperformed tremendously (SPEC DGS-NO2, SPEC DGS-CO, MQ131, MiCS-2714 and MiCS-4514). The results of our study show that meaningful local-scale measurements are possible with the former sensors deployed in an AELCM unit
A Colloquium on the Congress A Gift for Life. Considerations on Organ Donation
Italian Natl Transplant Ctr, I-00161 Rome, ItalyFac Med, BR-15015200 Sao Jose Do Rio Preto, SP, BrazilInst Urol Sao Jose Rio Preto, BR-15015200 Sao Jose Do Rio Preto, SP, BrazilOff Pastoral Care Hlth, Archdiocese Of Turin, ItalyCatholic Univ, Buenos Aires, DF, ArgentinaHop Necker Enfants Malad, Serv Transplantat Adultes, F-75016 Paris, FranceUniv Cattolica Sacro Cuore, Ctr Bioeth, I-00168 Rome, ItalyHarvard Univ, Sch Med, Massachusetts Gen Hosp, Transplant Ctr, Boston, MA 02114 USAUniv Molinette San Giovanni Battista Torino, Piedmont Reg Organ Procurement Org Responsible, Azienda Osped, I-10126 Turin, ItalyNew England Organ Bank Inc, Gateway Ctr 1, Newton, MA 02458 USAUniv Barcelona, Transplant Procurement Management IL3, Barcelona 08018, SpainSanta Maria Misericordia Univ Hosp, Dept Anesthesiol & Intens Care Med, I-33100 Udine, ItalyONT, Madrid 28029, SpainUniv Fed Sao Paulo, Hosp Rim e Hipertensao, BR-04038002 Sao Paulo, BrazilMed Univ Vienna, Dept Surg, Transplantat Unit, Gen Hosp Vienna, A-1090 Vienna, AustriaKarl Franzens Univ Graz, Fac Cathol Theol, A-8010 Graz, AustriaUniv Macerata, Dpt Educ Sci, Rome, ItalyUniv Fed Sao Paulo, Hosp Rim e Hipertensao, BR-04038002 Sao Paulo, BrazilWeb of Scienc