129 research outputs found

    Three-Dimensional Structure of Ito Kv4.2-KChIP2 Ion Channels by Electron Microscopy at 21 Å Resolution

    Get PDF
    AbstractRegulatory KChIP2 subunits assemble with pore-forming Kv4.2 subunits in 4:4 complexes to produce native voltage-gated potassium (Kv) channels like cardiac Ito and neuronal IA subtypes. Here, negative stain electron microscopy (EM) and single particle averaging reveal KChIP2 to create a novel ∼35 × 115 × 115 Å, intracellular fenestrated rotunda: four peripheral columns that extend down from the membrane-embedded portion of the channel to enclose the Kv4.2 “hanging gondola” (a platform held beneath the transmembrane conduction pore by four internal columns). To reach the pore from the cytosol, ions traverse one of four external fenestrae to enter the rotundal vestibule and then cross one of four internal windows in the gondola

    The DONE framework: Creation, evaluation, and updating of an interdisciplinary, dynamic framework 2.0 of determinants of nutrition and eating.

    Get PDF
    The question of which factors drive human eating and nutrition is a key issue in many branches of science. We describe the creation, evaluation, and updating of an interdisciplinary, interactive, and evolving "framework 2.0" of Determinants Of Nutrition and Eating (DONE). The DONE framework was created by an interdisciplinary workgroup in a multiphase, multimethod process. Modifiability, relationship strength, and population-level effect of the determinants were rated to identify areas of priority for research and interventions. External experts positively evaluated the usefulness, comprehensiveness, and quality of the DONE framework. An approach to continue updating the framework with the help of experts was piloted. The DONE framework can be freely accessed (http://uni-konstanz.de/DONE) and used in a highly flexible manner: determinants can be sorted, filtered and visualized for both very specific research questions as well as more general queries. The dynamic nature of the framework allows it to evolve as experts can continually add new determinants and ratings. We anticipate this framework will be useful for research prioritization and intervention development

    EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update

    Get PDF
    Recent insights in rheumatoid arthritis (RA) necessitated updating the European League Against Rheumatism (EULAR) RA management recommendations. A large international Task Force based decisions on evidence from 3 systematic literature reviews, developing 4 overarching principles and 12 recommendations (vs 3 and 14, respectively, in 2013). The recommendations address conventional synthetic (cs) disease-modifying antirheumatic drugs (DMARDs) (methotrexate (MTX), leflunomide, sulfasalazine); glucocorticoids (GC); biological (b) DMARDs (tumour necrosis factor (TNF)-inhibitors (adalimumab, certolizumab pegol, etanercept, golimumab, infliximab), abatacept, rituximab, tocilizumab, clazakizumab, sarilumab and sirukumab and biosimilar (bs) DMARDs) and targeted synthetic (ts) DMARDs (Janus kinase (Jak) inhibitors tofacitinib, baricitinib). Monotherapy, combination therapy, treatment strategies (treat-to-target) and the targets of sustained clinical remission (as defined by the American College of Rheumatology-(ACR)-EULAR Boolean or index criteria) or low disease activity are discussed. Cost aspects were taken into consideration. As first strategy, the Task Force recommends MTX (rapid escalation to 25 mg/week) plus short-term GC, aiming at >50% improvement within 3 and target attainment within 6 months. If this fails stratification is recommended. Without unfavourable prognostic markers, switching to—or adding—another csDMARDs (plus short-term GC) is suggested. In the presence of unfavourable prognostic markers (autoantibodies, high disease activity, early erosions, failure of 2 csDMARDs), any bDMARD (current practice) or Jak-inhibitor should be added to the csDMARD. If this fails, any other bDMARD or tsDMARD is recommended. If a patient is in sustained remission, bDMARDs can be tapered. For each recommendation, levels of evidence and Task Force agreement are provided, both mostly very high. These recommendations intend informing rheumatologists, patients, national rheumatology societies, hospital officials, social security agencies and regulators about EULAR's most recent consensus on the management of RA, aimed at attaining best outcomes with current therapies

    Hybrid cosmic ray measurements using the IceAct telescopes in coincidence with the IceCube and IceTop detectors

    Get PDF
    IceAct is a proposed surface array of compact (50 cm diameter) and cost-effective Imaging Air Cherenkov Telescopes installed at the site of the IceCube Neutrino Observatory at the geographic South Pole. Since January 2019, two IceAct telescope demonstrators, featuring 61 silicon photomultiplier (SiPM) pixels have been taking data in the center of the IceTop surface array during the austral winter. We present the first analysis of hybrid cosmic ray events detected by the IceAct imaging air-Cherenkov telescopes in coincidence with the IceCube Neutrino Observatory, including the IceTop surface array and the IceCube in-ice array. By featuring an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors, enabling significantly better primary particle type discrimination on a statistical basis. The hybrid measurement also allows for detailed feasibility studies of detector cross-calibration and of cosmic ray veto capabilities for neutrino analyses. We present the performance of the telescopes, the results from the analysis of two years of data, and an outlook of a hybrid simulation for a future telescope array

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event
    corecore