3,127 research outputs found
Mechanisms Responsible for omega-Pore Currents in Ca-v Calcium Channel Voltage-Sensing Domains
Mutations of positively charged amino acids in the S4 transmembrane segment of a voltage-gated ion channel form ion-conducting pathways through the voltage-sensing domain, named ω-current. Here, we used structure modeling and MD simulations to predict pathogenic ω-currents in CaV1.1 and CaV1.3 Ca2+ channels bearing several S4 charge mutations. Our modeling predicts that mutations of CaV1.1-R1 (R528H/G, R897S) or CaV1.1-R2 (R900S, R1239H) linked to hypokalemic periodic paralysis type 1 and of CaV1.3-R3 (R990H) identified in aldosterone-producing adenomas conducts ω-currents in resting state, but not during voltage-sensing domain activation. The mechanism responsible for the ω-current and its amplitude depend on the number of charges in S4, the position of the mutated S4 charge and countercharges, and the nature of the replacing amino acid. Functional characterization validates the modeling prediction showing that CaV1.3-R990H channels conduct ω-currents at hyperpolarizing potentials, but not upon membrane depolarization compared with wild-type channels
Spacelike Singularities and Hidden Symmetries of Gravity
We review the intimate connection between (super-)gravity close to a
spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody
algebras. We show that in this limit the gravitational theory can be
reformulated in terms of billiard motion in a region of hyperbolic space,
revealing that the dynamics is completely determined by a (possibly infinite)
sequence of reflections, which are elements of a Lorentzian Coxeter group. Such
Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras,
suggesting that these algebras yield symmetries of gravitational theories. Our
presentation is aimed to be a self-contained and comprehensive treatment of the
subject, with all the relevant mathematical background material introduced and
explained in detail. We also review attempts at making the infinite-dimensional
symmetries manifest, through the construction of a geodesic sigma model based
on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case
of the hyperbolic algebra E10, which is conjectured to be an underlying
symmetry of M-theory. Illustrations of this conjecture are also discussed in
the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added.
Published versio
Stochastic rainfall-runoff forecasting: parameter estimation, multi-step prediction, and evaluation of overflow risk
Recommended from our members
Potential migration and subjective well-being in Europe
By examining the preferences over migration destinations of those revealing a desire to permanently leave their country, this paper provides new evidence on the relevance of subjective measures for cross country comparisons. While hard statistics such as GDP per capita and unemployment rates are commonly used to measure a country’s success, this analysis reveals that people’s preferences over alternative migration
destinations are better explained by average levels of life satisfaction in the destination country. Aggregated measures of subjective well-being are, therefore, useful for international comparisons as they better reflect what makes some countries more attractive than others
Scientific Opportunities with an X-ray Free-Electron Laser Oscillator
An X-ray free-electron laser oscillator (XFELO) is a new type of hard X-ray
source that would produce fully coherent pulses with meV bandwidth and stable
intensity. The XFELO complements existing sources based on self-amplified
spontaneous emission (SASE) from high-gain X-ray free-electron lasers (XFEL)
that produce ultra-short pulses with broad-band chaotic spectra. This report is
based on discussions of scientific opportunities enabled by an XFELO during a
workshop held at SLAC on June 29 - July 1, 2016Comment: 21 pages, 12 figure
Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.
Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus
Magnetic vortex oscillator driven by dc spin-polarized current
Transfer of angular momentum from a spin-polarized current to a ferromagnet
provides an efficient means to control the dynamics of nanomagnets. A peculiar
consequence of this spin-torque, the ability to induce persistent oscillations
of a nanomagnet by applying a dc current, has previously been reported only for
spatially uniform nanomagnets. Here we demonstrate that a quintessentially
nonuniform magnetic structure, a magnetic vortex, isolated within a nanoscale
spin valve structure, can be excited into persistent microwave-frequency
oscillations by a spin-polarized dc current. Comparison to micromagnetic
simulations leads to identification of the oscillations with a precession of
the vortex core. The oscillations, which can be obtained in essentially zero
magnetic field, exhibit linewidths that can be narrower than 300 kHz, making
these highly compact spin-torque vortex oscillator devices potential candidates
for microwave signal-processing applications, and a powerful new tool for
fundamental studies of vortex dynamics in magnetic nanostructures.Comment: 14 pages, 4 figure
The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects
We study the dynamics of four dimensional gauge theories with adjoint
fermions for all gauge groups, both in perturbation theory and
non-perturbatively, by using circle compactification with periodic boundary
conditions for the fermions. There are new gauge phenomena. We show that, to
all orders in perturbation theory, many gauge groups are Higgsed by the gauge
holonomy around the circle to a product of both abelian and nonabelian gauge
group factors. Non-perturbatively there are monopole-instantons with fermion
zero modes and two types of monopole-anti-monopole molecules, called bions. One
type are "magnetic bions" which carry net magnetic charge and induce a mass gap
for gauge fluctuations. Another type are "neutral bions" which are magnetically
neutral, and their understanding requires a generalization of multi-instanton
techniques in quantum mechanics - which we refer to as the
Bogomolny-Zinn-Justin (BZJ) prescription - to compactified field theory. The
BZJ prescription applied to bion-anti-bion topological molecules predicts a
singularity on the positive real axis of the Borel plane (i.e., a divergence
from summing large orders in peturbation theory) which is of order N times
closer to the origin than the leading 4-d BPST instanton-anti-instanton
singularity, where N is the rank of the gauge group. The position of the
bion--anti-bion singularity is thus qualitatively similar to that of the 4-d IR
renormalon singularity, and we conjecture that they are continuously related as
the compactification radius is changed. By making use of transseries and
Ecalle's resurgence theory we argue that a non-perturbative continuum
definition of a class of field theories which admit semi-classical expansions
may be possible.Comment: 112 pages, 7 figures; v2: typos corrected, discussion of
supersymmetric models added at the end of section 8.1, reference adde
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
