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Abstract Probabilistic runoff forecasts generated by stochastic greybox models can

be notably useful for the improvement of the decision-making process in real-time

control setups for urban drainage systems because the prediction risk relationships in

these systems are often highly nonlinear. To date, research has primarily focused on

one-step-ahead flow predictions for identifying, estimating, and evaluating greybox

models. For control purposes, however, stochastic predictions are required for longer

forecast horizons and for the prediction of runoff volumes, rather than flows. This

article therefore analyzes the quality of multistep ahead forecasts of runoff volume

and considers new estimation methods based on scoring rules for k-step-ahead pre-

dictions. The study shows that the score-based methods are, in principle, suitable for

the estimation of model parameters and can therefore help the identification of mod-

els for cases with noisy in-sewer observations. For the prediction of the overflow risk,

no improvement was demonstrated through the application of stochastic forecasts in-

stead of point predictions, although this result is thought to be caused by the notably

simplified setup used in this analysis. In conclusion, further research must focus on

the development of model structures that allow the proper separation of dry and wet

weather uncertainties and simulate runoff uncertainties depending on the rainfall in-

put.
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1 Introduction1

Real-time control (RTC) often provides a method to efficiently operate sewer systems2

and reduce spills of sewage into lakes, rivers, and oceans (combined sewer overflows,3

CSOs). This reduces the need to build storage volumes in the sewer system, which4

makes the method economically attractive. A multitude of control systems are in op-5

eration today. The types of setup range from rule-based strategies that are determined6

offline (Fuchs and Beeneken, 2005; Seggelke et al, 2012), to online optimizations7

of storage volumes (Pabst et al, 2011) and model predictive control (MPC) (Schütze8

et al, 2004; Puig et al, 2009).9

It is commonly expected that the combination of forecast information and global10

optimization as applied in MPC will yield the best control results. This is obscured11

by the complex side constraints that result from the operational requirements in the12

sewer system and by insufficient forecast quality. Recently, a new control setup was13

introduced in the Copenhagen area to minimize the total overflow risk from a num-14

ber of storage basins in the catchment through the dynamic adjustment of the basin15

outflows and the pumping capacities. The decisions in this algorithm for the global16

control of the system are based on forecasted runoff volumes for the catchment of17

each basin (Dynamic Overflow Risk Assessment, DORA) (Vezzaro and Grum, 2012;18

Grum et al, 2011).19

Forecasts in such a setup need to be available at varying horizon lengths which20

makes models that provide multistep predictions attractive. Furthermore, the fore-21

cast uncertainties need to be considered in the decision-making process because22

prediction-risk relationships in urban drainage systems are typically nonlinear (Vez-23

zaro and Grum, 2012). However, no tools for the modeling of predictive uncertainties24

in an online setting are available. At present, the very simplified assumption that fore-25

cast uncertainties can be described by a Gamma distribution with shape parameters26

that depend on the predicted runoff volume is used.27

Stochastic greybox models fulfill both requirements because these provide predic-28

tive uncertainties at varying horizons. For our purposes, stochastic greybox models29

are termed simplified models with physically interpretable parameters that provide a30

quantification of the model uncertainties. Several authors have demonstrated the gen-31

eral applicability of this class of models to urban drainage problems. Carstensen et al32

(1998) applied ARMAX models to simulate the inflow to a wastewater treatment33

plant. Bechmann et al (2000) simulated the first flush and later the pollutant loads34

(Bechmann et al, 1999) using stochastic differential equations. Breinholt et al (2011)35

investigated model setups for flow predictions based on linear reservoir cascades us-36

ing stochastic differential equations and took the initial steps required to quantify37

the predictive uncertainty. Furthermore, Thordarson et al (2012) investigated multi-38

step flow predictions for urban drainage systems and evaluated these using skill score39

criteria.40

Previous works on stochastic forecasting of runoff in urban drainage systems have41

focused on the prediction of flows for one or several prediction horizons. However,42

the decision-making process in real-time control is typically based on the predicted43

runoff volume. The quality of the probabilistic multistep volume predictions obtained44

from the stochastic greybox models has not yet been evaluated. Furthermore, it is45
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unclear whether the currently used parameter estimation technique, which is based46

on the maximization of the likelihood for one-step ahead predictions, also yields a47

good model for multistep-ahead forecasts.48

Fig. 1 Flow scheme for comparing model estimation approaches and evaluation of multistep forecasts of

runoff volume

Therefore, following the scheme shown in Figure 1, the stochastic multistep pre-49

dictions of the runoff volume are generated using greybox models. New estimation50

approaches for stochastic greybox models that focus on multistep predictions were51

suggested, and the forecasts from the resulting models were compared.52

A simplified assessment of the ability of the models to predict the overflow risk53

was subsequently performed to evaluate the possible effects of the different forecasts54

on real-time control.55
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2 Methods56

2.1 Data and Catchments57

We consider two catchments in the Copenhagen area. The Ballerup catchment has58

a total area of approximately 1,300 ha and is mainly laid out as a separate system,59

although it does have a small combined section. The runoff in this area is also strongly60

influenced by rainfall-dependent infiltration.61

The Damhusåen catchment is located close to the Ballerup catchment but drains62

to a different treatment plant. We consider the northern part of this catchment, which63

has a total area of approximately 3,000 ha. The catchment is laid out as a combined64

sewer system, and a multitude of CSOs are located in the area. Flow measurements65

are available for both catchments at a 5-min resolution.66

Numerous online rain gauge measurements are available from the Danish wastew-67

ater committee’s (SVK) network in the considered catchments (Jørgensen et al, 1998).68

The gauges marked in Figure 2 were used as the input for the runoff forecasting mod-69

els for the two different catchments. These are the same gauges used in previous stud-70

ies on the Ballerup catchment (Breinholt et al, 2011; Thordarson et al, 2012) and for71

radar rainfall calibration and real-time control in the Copenhagen area (Grum et al,72

2011). These gauge measurements are also available with a temporal resolution of 573

minutes.74

We have selected a 3-month measurement period from 25/06/2010 to 29/09/201075

for this study. The period contains several summer storms that can be considered76

relevant for control applications in urban drainage systems. A modeling time step77

of 10 min was adopted and corresponds to the temporal resolution used in previous78

studies (Löwe et al, 2012a,b). The flow and rain gauge data were averaged to match79

this time step.80

Fig. 2 Ballerup (left) and Damhusåen (right) catchments with online rain-gauge measurements in the area

(black dots) and the gauges used as the input data for the Ballerup (circle) and the Damhusåen (rectangle)

catchments
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2.2 Stochastic Greybox Models for Runoff Prediction81

We predicted the runoff at the catchment outlets using stochastic greybox models,82

which are briefly described in this section. The physical part of the models is based83

on lumped reservoir approaches that transform the rainfall input into the flow output.84

The principal model setup is described by Breinholt et al (2011). In this work, we85

applied a simple two-reservoir cascade to both catchments. In a state space formula-86

tion, we used two coupled Itô stochastic differential equations, which together form87

the following so-called system or state equations88

d
[

S1,t
S2,t

]
=

[
A ·Pt +a0 − 1

K S1,t
1
K S1,t − 1

K S2,t

]
dt

︸ ︷︷ ︸
Dri f t term

+

[
σ1Sγ1

1,t 0

0 σ2Sγ2
2,t

]
dωt

︸ ︷︷ ︸
Di f f usion term

(1)89

90

and the observation equation91

Yk = log(Qk) = log(
1

K
S2,k +Dk)+ ek (2)92

93

where94

Dk =
2

∑
i
(sisin

i2πk
24h

+ cicos
i2πk
24h

) (3)95

96

S1 and S2 correspond to the states of the system, i.e. virtual storage fillings, A is the97

sealed area in the catchment, a0 refers to the mean dry weather flow at the catch-98

ment outlet, and K corresponds to the travel time constant. The rainfall input Pt was99

determined as the mean area rainfall by averaging the rain-gauge measurements con-100

sidered for every catchment. In the diffusion term, the variance of the state values was101

scaled depending on the state value itself because the model predictions are more un-102

certain in wet weather. The scaling was exponential to avoid extreme increases in the103

variance in situations with high runoff.104

In the observation equation, Qk corresponds to the flow observation at time step k105

in discrete time, and Dk describes the variation of the dry weather flows as a harmonic106

function with parameters s1, s2, c1, and c2. A log transform was used to avoid negative107

flow predictions. Please refer to Breinholt et al (2011) for a detailed derivation and108

description of the model structure.109

The open source software CTSM (Kristensen and Madsen, 2003) was used for the110

parameter estimation and the forecast generation. State-dependent diffusion terms,111

such as those in equation (1), cannot be modeled in this setup (Vestergaard, 1998).112

Therefore, a Lamperti transform was applied to the system equations (1), as described113

by Breinholt et al (2011).114

The multistep flow predictions were generated using the extended Kalman fil-115

ter with updating. This setup provides a log-transformed flow prediction Ŷi+k|i with116

variance Ri+k|i that is assumed to be normally distributed.117
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2.3 Parameter Estimation for Stochastic Runoff Prediction Models118

The purpose of the runoff prediction models considered is to describe the expected119

runoff volume over a horizon of variable extent, which is defined by the control120

scheme. When estimating the model parameters from historical data, we need to de-121

sign the objective function such that the resulting model is actually optimal for the122

generation of predictions for different horizons. Below, we introduce possible objec-123

tive functions.124

All of the suggested objective functions focus on flow values rather than runoff125

or even overflow volumes because the conversion from stochastic flow to runoff pre-126

dictions is computationally demanding. In addition, the models should be estimated127

to correctly describe the physical behavior of the system and thus reduce the risk128

of overfitting (Weijs et al, 2010). The physical system behavior is captured when129

focusing on flow values during the parameter estimation, whereas focusing on over-130

flow volumes would likely introduce a partial loss of the information provided by the131

measurements.132

Parameter estimation was performed automatically in all cases using a genetic al-133

gorithm based on the concepts described by Whitley (1994), Spall (2003) and Hallam134

(2010).135

2.3.1 Maximum Likelihood Estimation (Model A)136

The most common approach for the estimation of parameters in stochastic greybox137

models is to maximize the likelihood function for a given series of measurements138

(Kristensen et al, 2004; Breinholt et al, 2011). The computation of the likelihood139

function is based on the computation of the one-step prediction errors or innovations140

under the assumption that the one-step-ahead conditional densities are Gaussian:141

εi = Yi − Ŷi|i−1 (4)142
143

This approach may be difficult in the context of the estimation of models for multi-144

step predictions in the urban runoff setting. The parameters found may not to be145

optimal for multi-step predictions because these are based on the one-step prediction146

errors. Furthermore, there is a clear risk of overfitting if the physical part of the model147

fails to completely capture the system behavior. The one-step predictions are strongly148

influenced by the updating of the states in the extended Kalman filter, and we may149

identify parameters that are optimal for this updating but do not actually match the150

physical system behavior, which would result in bad forecasts and simulations.151

One may argue that, in these situations, the modeler should attempt to improve152

the physical part of the model and make it more suitable to the actual behavior of the153

catchment. However, in practical applications, we will often face the situation that a154

simple model will be sufficient for the forecasting purpose; moreover, the tailoring155

of a model to each new catchment may be too time-consuming. This also indicates a156

need for more robust estimation methods that focus on the forecasting purpose.157
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2.3.2 Minimizing the Error of the Predicted Runoff Volumes (Model B)158

The fitting of forecast models in hydrology is typically performed by minimizing the159

forecast error variance (see, e.g., Nash and Sutcliffe (1970)). We suggest an objec-160

tive function based on the sum of the squared errors between the predicted and the161

observed runoff volumes over the prediction horizon:162

S(θ) =
N

∑
i=1

(
k

∑
j=1

Qi+ j −
k

∑
j=1

Q̂i+ j|i(θ))2Δ t (5)163

164

At every time step i of length Δ t, a k-step ahead flow prediction Q̂ is generated.165

The flow values are integrated to a runoff volume over the prediction horizon and166

compared to the observations Q. The minimization of the sum of these volume differ-167

ences for all N time steps gives an objective function for the estimation of the model168

parameter set θ .169

This objective function optimizes the model to give a good point forecast of the170

expected runoff volumes over the maximum prediction horizon of k steps (e.g. k=10171

steps). Implicitly, we assume that we also obtain good predictions for shorter hori-172

zons.173

2.3.3 Estimation Based on the Interval Score (Model C)174

Minimizing the squared error of the predicted runoff volumes tunes the forecast mod-175

els to give good point predictions of the runoff volume for multistep prediction hori-176

zons. The quality of the forecast uncertainties is not evaluated in this criterion. How-177

ever, the forecast objective in the described setup is to obtain a probabilistic descrip-178

tion of the predicted runoffs. The predictive distribution should be as narrow (sharp)179

as possible and at the same time match the observations (be calibrated or reliable).180

To account for the quality of the probabilistic predictions, we can modify the181

criterion developed in section 2.3.2. Assuming normality, we compute a (1− β ) ·182

100% = 95% prediction interval for forecast horizon j for the log-transformed flow183

values as184

ûY i+ j|i = Ŷi+ j|i +1.96 ·σŶi+ j|i185

ˆlY i+ j|i = Ŷi+ j|i −1.96 ·σŶi+ j|i (6)186
187

where σŶi+ j|i is the standard deviation of the j-step predictions.188

The quality of this prediction interval can be evaluated using a number of meth-189

ods, e.g. the interval score described by Gneiting and Raftery (2007), which was190

applied to stochastic flow forecasts in urban drainage systems by Thordarson et al191

(2012). The score for the j-step prediction generated at time step i is192

SCβ
i, j = ûY i+ j|i − ˆlY i+ j|i +

2

β
( ˆlY i+ j|i −Yi+ j)�{Yi+ j < ˆlY i+ j|i}193

+
2

β
(Yi+ j − ûY i+ j|i)�{Yi+ j > ûY i+ j|i} (7)194

195
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In equation 8, a reasonable scoring rule based on equation 7 is suggested and accounts196

for several forecast horizons. More weight is placed on the flow forecasts for shorter197

horizons, which have a stronger influence on forecasts of runoff volume because the198

latter are generated as an integral over the flow forecasts for different horizons.199

SCβ
i =

1

∑k
j=1(k− j+1)

(
k

∑
j=1

(k− j+1) ·SCi, j) (8)200

201

By averaging over all N time steps, we obtain the objective function for parameter202

estimation in model C.203

S(θ) =
1

N

N

∑
i=1

SCβ
i (9)204

205

2.3.4 Estimation Based on Continuous Ranked Probability Score (Model D)206

The interval score criterion described above was previously applied to flow forecasts207

in urban drainage systems, but focuses on a 95% prediction interval, i.e., only the208

tails of the predictive distribution. This may lead to a dislocation of the center of209

the predicted flow distribution. The continuous ranked probability score (CRPS) is210

a measure of the fit of the overall distribution; therefore, we introduce this score211

here as the last objective function for parameter estimation in the stochastic runoff212

forecasting models. Gneiting et al (2005) suggested the use of the CRPS in the fitting213

of post-processing models for ensemble predictions and consider it robust toward214

extreme events and outliers. A discussion of the score can be found in the manuscript215

published by Gneiting and Raftery (2007).216

We obtained the CRPS for the j-step flow prediction generated at time step i as217

CRPSi, j =
∫ ∞

−∞
(F(s)−�{s > Yi+ j})2ds (10)218

219

where F is the cumulative distribution function (CDF) for the (assumed normally220

distributed) log-transformed flow prediction Ŷi+ j|i, and Yi+ j is the corresponding (i+221

j)th value in the time series of the observations. � denotes the Heaviside function222

and takes the value 0 when s < Yi+ j and 1 otherwise. There exists a closed-form223

solution for equation (10) if the predicted value is normally distributed. However, we224

do not expect to be able to always rely on this assumption in practical situations and225

therefore chose to evaluate the integral numerically.226

As in equation (8), we performed a weighting of the CRPS values derived for227

different forecast horizons to obtain an average value for every time step. Ultimately,228

we averaged the values for all of the considered time steps as in equation (9) to obtain229

the value of the objective function. The optimal parameter set is found by minimizing230

this value.231
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2.4 Generating Stochastic Forecasts of Runoff Volumes232

The applied greybox models provide flow forecasts for horizons 1 up to k. To derive233

probabilistic forecasts of the runoff volume, we used a multivariate sampling ap-234

proach. The correlations between the flow forecasts for different horizons are derived235

from past forecast errors. The following steps were taken.236

– Generate a 10-step forecast at time step i from the greybox models. We obtained237

a vector of (assumed normal) log-transformed flow predictions Ŷi containing the238

forecast values for horizons 1 through 10. The corresponding observations are239

denoted Yi.240

– Find the error covariance contribution from this time step (Madsen, 2008):241

Vi = (Yi − Ŷi) · (Yi − Ŷi)
T (11)242

243

– Estimate the overall error covariance structure for time step i using exponential244

smoothing. This allows for time variation of the considered correlations. We ap-245

plied λ = 0.99.246

Σi = λ ·Σi−1 +(1−λ ) ·Vi (12)247
248

– Scale Σi to the predictive variances provided by the greybox model. We obtained249

a covariance structure with variances according to those predicted by the model250

and correlation values estimated from the forecast errors.251

– Create 100,000 multivariate flow samples from the N(Ŷi,ΣS,i) distribution (using252

the R-package MASS (Venables and Ripley, 2002)), each of which represents253

a possible flow scenario for horizons 1 through 10. Integrate each sample into254

runoff volumes and empirically derive the distribution of the runoff volumes.255

2.5 Forecast Evaluation256

A set of measures was applied to evaluate the quality of the prediction intervals gen-257

erated by the stochastic greybox models. These are described by Thordarson et al258

(2012) and Jin et al (2010). All of the measures were applied not to flow predictions259

as in Thordarson et al (2012) but to runoff volume predictions for different forecast260

horizons.261

– Reliability262

REL =
1

N

N

∑
i=1

nβ
i (13)263

264

where N is the number of observations, β is the significance level, and nβ is an265

indicator variable with value 1 if an observation is not contained in the (1−β )%266

prediction interval and 0 otherwise. The measure corresponds to the percentage267

of observations not contained in the (1− β )% prediction interval. A reliability268

bias can be defined as269

RB = β −REL (14)270
271
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and becomes negative if the prediction bands fail to include more than β% of the272

observations (it is otherwise positive). Ideally, the reliability bias should be 0. The273

bias is bounded depending on the significance level.274

– Average relative interval length275

ARIL =
1

N

N

∑
i=1

Ûi+k|i − L̂i+k|i
Vi+k|i

(15)276

277

This refers to the average width of a volume prediction interval with lower bound278

L̂i+k|i and upper bound Ûi+k|i generated for a forecast horizon of k time steps279

relative to the observed value Vi+k|i. We consider 95% prediction intervals.280

– CRPS (10)281

In general, a good stochastic forecast will be calibrated, i.e., generate reliabilities282

close to the significance level of the required prediction interval. Given a calibrated283

model, the spread of the prediction bounds should of course be as narrow as possible,284

which is indicated by low ARIL values. As an overall criterion, we aim to obtain the285

minimal CRPS for the forecasts of runoff volume.286

2.6 Evaluating the Overflow Risk for Different Forecast Types287

To evaluate the effect of the considered forecasting models on the RTC, a simplified288

assessment of the model ability to correctly predict the overflow cost according to289

equation (16) was used. We assumed a basin at the outlet of both catchments studied.290

The basin outlet capacity is fixed. The outlet capacity and volume were both chosen291

somewhat arbitrarily but such that a reasonable amount of overflow is obtained in the292

summer period considered. The selected values are shown in Figure 3.293

Fig. 3 Simplified model setup used for the evaluation of the predicted overflow cost for the different

models and catchments

We considered a prediction horizon of 10 time steps or 100 min. Evaluating the294

basin mass balance with the selected characteristics and the measured time series of295

catchment outflows, we determined a series of true ’predicted’ overflow volumes over296

a 100-min horizon at every time step. Assuming a unit cost of overflow volume, this297

amount also corresponds to the true ’predicted’ overflow cost Cf ,t :298

Cf ,t =
∫

C(Vf ) · p(Vf )t dVf (16)299
300
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where C(Vf ,t) corresponds to the cost value forecasted at time step t and p(Vf )t is the301

forecasted probability that a runoff volume Vf occurs.302

Forecasts of the runoff volumes were again derived from the probabilistic flow303

forecasts using the sampling approach described in section 2.5. Each sample forms a304

time series of flow predictions for the different horizons. We can evaluate the basin305

mass balance for this time series and compute the predicted overflow cost for each306

sample. Ideally, the predicted overflow cost derived from the stochastic models will307

match the reference derived from the observations at every time step.308
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3 Results309

3.1 Forecast Performance of Different Objective Functions310

3.1.1 Runoff Predictions for a Number of Rain Events311

Figures 4 and 5 compare the predicted runoff volumes from the different models to312

the observed runoff volumes in the Damhusåen catchment. We also included predic-313

tion intervals that are based on the point prediction of model A, which describe the314

uncertainty of the runoff forecasts by a Gamma distribution, as detailed by Vezzaro315

and Grum (2012).316

We found that model A satisfactorily captures the characteristics of the observed317

runoff curve. The prediction intervals, however, appear to be rather small. Model318

B provides very wide prediction intervals, whereas model C gives wider prediction319

intervals than model A. The forecasts from model D appear similar to those from320

model A, although the 50% quantile of the forecasts appears to match the observa-321

tions slightly better than model A. The prediction bounds from model D are narrower322

than those from model A.323

With the exception of model B, all of the models appear to provide better esti-324

mates of forecast uncertainty than the Gamma distribution.325

The estimated model parameters, which are shown in Table 1, exhibit the fol-326

lowing tendency: models estimated using multistep predictions produce more pro-327

nounced runoff peaks as a result of the smaller K values in the Ballerup catchment328

and the larger effective areas A in the Damhusåen catchment. Note that the models329

do not necessarily respect the mass balance due to the state updating. For all models,330

we obtained rather small observation uncertainties σe compared with the uncertainty331

of the model states (σ1, σ2). This result demonstrates, that we consider the informa-332

tion content in the flow observations to be high and update the model to stay close333

to these observations. The different forecast uncertainties apparent in Figures 4 and 5334

are a result of the different state uncertainties σ1 and σ2, which are shown in Table 1.335
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Fig. 4 95% prediction intervals for the 10-step runoff volume forecasts from model A (left) and model

B (right). The 50% prediction quantile and the observation and the prediction intervals derived from the

Gamma distribution are also shown (Damhusåen catchment).
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Fig. 5 95% prediction intervals for the 10-step runoff volume forecasts from model C (left) and model

D (right). The 50% prediction quantile and the observation and the prediction intervals derived from the

Gamma distribution are also shown (Damhusåen catchment).
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Table 1 Parameter estimates for the two catchments obtained with different estimation approaches.

a0 K A σ1 σ2 σe
[m3/h] [h] [ha]

Ballerup

A 393 7.52 206 1.61E+00 1.28E-02 6.88E-06

B 400 5.28 55 1.26E+00 5.54E-02 6.76E-07

C 372 3.03 74 4.35E-01 1.82E-02 4.35E-09

D 307 3.63 78 3.62E-01 1.09E-02 6.03E-06

Damhusåen

A 841 1.95 94 1.16E+00 6.79E-03 1.24E-08

B 1678 2.49 270 7.70E+00 1.29E-01 1.07E-10

C 997 1.88 207 1.34E+00 7.34E-03 6.72E-10

D 933 2.51 122 7.64E-01 5.92E-03 7.24E-10
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3.1.2 Evaluation of the Predictive Distributions336

The first step in this analysis is to study the overall quality of the predictive distribu-337

tions. The CRPS was used to compare the forecasts and the observations. Note that,338

other than in the criterion derived for the model estimation in section 2.3.4, we based339

the analysis on the predicted runoff volumes for a given horizon.340

The estimation based on the volume prediction errors (Model B) clearly gives the341

worst CRPS values. For the other models, we cannot easily identify the differences342

based on this criterion. In both catchments, the volume forecasts generated by models343

A, C, and D are very similar with respect to the CRPS.344

Table 3 shows the ARIL values for the 95% prediction intervals of the runoff345

volumes for different forecast horizons. Model B yields very wide prediction intervals346

because it considers only the point prediction in the model estimation. Large state347

uncertainties facilitate the state updating and, if the quality of the observations is348

acceptable, lead to better point predictions. The predicted uncertainties, however, are349

too large.350

There is less difference between the forecasts generated by models A and C with351

respect to ARIL. The forecasts generated by model D are clearly sharper than those352

obtained with the other models. This tendency of the CRPS-based estimation was353

also noted by Gneiting et al (2005).354

Although we assumed that the simple lumped reservoir model is much less suited355

to the prediction of the runoff in the bigger and more complex Damhusåen catchment356

than in the Ballerup catchment, we cannot identify a trend toward relatively larger357

forecast uncertainties for this catchment.358

We continued this analysis by evaluating the distribution of the predicted runoff359

volumes. Figure 6 shows the reliability biases RB of the runoff volume predictions360

Table 2 CRPS for volume predictions in m3 considering different prediction horizons (in time steps, step

length = 10 min) and different estimation approaches for the two catchments.

Ballerup Damhusåen

Horizon A B C D A B C D

1 2 3 2 2 5 25 5 5

2 5 7 5 5 14 62 14 15

3 8 12 8 8 28 110 29 30

4 12 17 12 11 48 169 48 51

5 16 23 16 15 73 239 73 76

6 21 30 21 20 103 319 103 106

7 27 38 26 25 137 410 137 141

8 33 46 32 30 176 511 176 181

9 39 54 38 36 219 623 218 224

10 46 63 45 42 267 745 264 271

Mean 21 29 20 19 107 321 107 110
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Table 3 ARIL for 95% volume prediction intervals considering different prediction horizons (in time

steps, step length = 10 min) and different estimation approaches for the two catchments.

Ballerup Damhusåen

Horizon A B C D A B C D

1 0.21 0.67 0.22 0.19 0.10 1.65 0.12 0.08

2 0.22 0.75 0.24 0.19 0.14 2.15 0.16 0.10

3 0.24 0.85 0.27 0.20 0.18 2.73 0.20 0.12

4 0.27 0.95 0.30 0.22 0.22 3.38 0.25 0.14

5 0.30 1.04 0.33 0.23 0.26 4.13 0.29 0.16

6 0.33 1.14 0.35 0.25 0.29 4.97 0.34 0.19

7 0.36 1.23 0.38 0.26 0.33 5.93 0.39 0.21

8 0.39 1.31 0.40 0.27 0.37 7.00 0.43 0.23

9 0.42 1.40 0.43 0.29 0.40 8.19 0.48 0.25

10 0.45 1.48 0.45 0.30 0.44 9.50 0.52 0.27

Mean 0.32 1.08 0.34 0.24 0.27 4.96 0.32 0.18

considering different levels of significance β and prediction horizons. A significance361

level of β = 0.05 corresponds to a 1−0.05 = 95% prediction interval.362

For model A, we observed small reliability biases for high coverage rates, i.e., at363

the tails of the distribution. For smaller coverage rates, however, we overestimated the364

forecast uncertainties, which led to positive reliability biases. This problem becomes365

more pronounced for longer forecast horizons.366

As indicated previously, model B clearly overestimates the forecast uncertainties367

and yields strongly positive reliability bias values. Model C gives results that are368

similar to those of model A, but generates smaller reliability biases at longer horizons.369

Model D yields a slight underestimation of the forecast uncertainties for high370

coverage rates. Compared with models A and C, however, the overestimation of the371

uncertainties in the center of the distribution is also reduced. Similar to model C, we372

observed smaller reliability bias values at longer horizons with model D compared373

with model A.374

Models C and D account for multistep predictions in model estimation. In both375

cases, this results in reduced reliability bias values at longer horizons compared to376

model A. The parameter estimation in model C focuses on 95% prediction intervals.377

This model consequently provides the best fit at the tails of the distribution.378

For model D, a more balanced behavior can be observed with a reduced overes-379

timation of the uncertainties at the center of the distribution but an underestimation380

at the tails. The latter leads to slightly worse CRPS values of the forecasts of runoff381

volume compared with model A.382

In general, all of the models result in either an overestimation of the forecast383

uncertainties at the center of the distribution or an underestimation at the tails. This384

finding indicates that the normality assumption used in the multivariate sampling385

approach may not hold.386
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There is a noticeable difference between the two catchments. Although we ob-387

tained somewhat reliable (or calibrated) forecasts for the Ballerup catchment, we388

tended to overestimate the uncertainties in the Damhusåen catchment because the389

applied model is less suitable to the description of the behavior of this system.390

In both catchments, the forecast uncertainties during rain events are clearly un-391

derestimated by models A, C, and D (data not shown). This finding indicates that392

the applied model structure is not able to properly distinguish between dry and wet393

weather uncertainties.394
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Fig. 6 Reliability bias for models A (top) through D (bottom) considering the prediction intervals for

different levels of significance β and different forecast horizons for the Ballerup (left) and Damhusåen

(right) catchments.
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3.2 Predicted Overflow Cost for Fictive Basins395

Table 4 shows the overflow cost predicted using the simplified approach described in396

section 2.6. The values for the true observations and the runoff predictions generated397

by the different models over a horizon of 10 time steps are shown. The values shown398

are integrated over the whole time period of 3 months. To compare the results with399

the state-of-the-art method, we included two additional cases:400

– Gamma - uses the point prediction from model A and derives the forecast uncer-401

tainty for the runoff volumes from a Gamma distribution, the shape parameters of402

which depend on the point value (Vezzaro and Grum, 2012)403

– Model A Point - derives the predicted overflow volumes using the point forecast404

of model A without considering the forecast uncertainties405

We found that model A produces values close to the true overflow volumes in406

the Ballerup catchment and underestimates the true cost in the Damhusåen catch-407

ment. When ignoring the forecast uncertainties provided by model A, we obtained408

almost the same results (Model A Point), whereas the description of the forecast un-409

certainties with a Gamma distribution results in a clear overestimation of the overflow410

volumes. This finding indicates that a correct point forecast is essential for a good es-411

timation of the overflow volumes in the simplified setup, whereas too small or no412

estimates of forecast uncertainties hardly affect the estimation of overflow volumes.413

In contrast, a too large estimate of the runoff forecast uncertainties, as obtained from414

the Gamma distribution, will lead to an overestimation of the overflow risk.415

A similar result was obtained with model B, which generated reasonable re-416

sults for the Ballerup catchment but strongly overestimated the overflow risk in the417

Damhusåen catchment as a result of the very high estimates of the forecast uncer-418

tainty.419

Models C and D exhibit a tendency to underestimate the overflow volumes. As in420

model A, this underestimation is the result of the underestimation of the runoffs by421

the point prediction, as observed in Figure 5.422

Considering the RMSE between the true overflow cost for a 10-step horizon and423

the predicted overflow cost values derived from the different models, we obtained424

a similar picture. A clear overestimation of the forecast uncertainties also results in425

increased RMSE values for the overflow risk (model A Γ and model B), whereas426

neglecting the forecast uncertainties hardly affects the estimated overflow cost values427

(model A Point). Models C and D provide better point forecasts during the overflow428

events in the Damhusåen catchment, which results in smaller RMSE values for the429

overflow cost.430

In the authors’ view, the most interesting outcome of this analysis is that no dif-431

ference was found between the deterministic prediction of the overflow risk (model432

A Point) and the use of forecast uncertainties (model A). Two possible reasons can be433

suggested for this result. First, a linear relationship between the overflow volume and434

the overflow cost was used in this simplified analysis. With a nonlinear relationship435

that punishes (for example) the start of an overflow event, forecasts of the overflow436

risk will profit more from a proper quantification of the uncertainty of the runoff437

predictions.438
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Table 4 Predicted overflow cost for 10-step horizon in m3 accumulated over all time steps.

Ballerup Damhusåen

True 3.1E+05 6.5E+05

A 3.2E+05 4.2E+05

B 3.8E+05 2.2E+06

C 2.5E+05 4.4E+05

D 2.6E+05 4.6E+05

A Γ 4.5E+05 8.2E+05

A Point 3.1E+05 4.1E+05

Table 5 RMSE between the true overflow cost and the prediction in m3 from different models for a 10-step

horizon.

A B C D A Γ A Point

Ballerup 37 43 45 40 62 37

Damhusåen 190 672 177 167 194 195

Second, the analysis performed here was static in the basin layout. Using the con-439

sidered dataset, we obtained either only one event with a small overflow volume or440

several events with rather large overflow volumes by choosing different basin dimen-441

sions or outlet capacities. The effect of considering the forecast uncertainties is most442

visible in those events where either the basin is close to being completely filled or443

where only small overflow volumes are observed. In a predictive real-time control444

system, the simulated basin outlet is varied in the optimization routine, which results445

in strong variations in the simulated basin filling. A proper description of the forecast446

uncertainties is more important in those cases.447
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4 Conclusions448

We have evaluated the quality of probabilistic multistep runoff volume forecasts gen-449

erated by stochastic greybox models and compared the effect of different estimation450

methods on the forecast quality. Four methods were compared: a maximum like-451

lihood estimation based on one-step-ahead predictions (model A), a deterministic452

method that minimizes the error of the 10-step-ahead predictions (model B), and two453

methods that minimize the interval score for the 95% intervals of the multistep flow454

predictions (model C) or the continuous ranked probability score (CRPS, model D).455

We concluded that, although it focuses on the whole prediction horizon, the de-456

terministic estimation method (model B) is unsuitable for estimating the stochastic457

models. The quality of the predictive uncertainty is not a criterion in the objective458

function for this method. In the cases considered here, this model results in too large459

estimates of the uncertainty for the states.460

Models A, C, and D provided reasonable estimation results and multistep fore-461

casts of the runoff volume with similar skill values. Overfitting by model A was not462

observed as a result of the high quality of the considered flow observations. More463

noisy measurements will make the parameter estimation using one-step predictions464

more difficult and favor approaches focusing on multistep predictions.465

However, the use of multistep predictions in parameter estimation (models C and466

D) clearly reduces the overestimation of the uncertainties at longer forecast horizons.467

Using the interval score for the parameter estimation (model C) results in forecasts468

that are suitable for the 95% prediction interval and overestimate the uncertainties in469

the center of the distribution. Applying the CRPS as the objective function (model D)470

allows the balance of this effect and gives forecasts that are more evenly calibrated471

over the whole distribution.472

In the prediction of the overflow risk in a simplified setup, it was demonstrated473

that a significant overestimation of the runoff forecast uncertainties leads to a strong474

overestimation of the overflow risk. Consequently, models A, C, and D all outperform475

the reference model, which describes the forecast uncertainties with a simple gamma476

distribution.477

In the applied setup, it is not possible to show that the risk of basin overflow478

can be predicted better through the dynamic modeling of the uncertainties of the479

runoff forecasts compared to the application of a simple point forecast. However, the480

analysis applied here is linear and static in the basin layout. It is expected that the481

forecast uncertainties will be relevant in a more realistic control setting that exhibits482

nonlinear relationships between the forecast values and the risk and where the basin483

outflows are dynamically modified as part of an optimization routine.484

In addition, all of the models clearly underestimate the forecast uncertainties dur-485

ing rain events. This finding suggests that the model structure should be modified to486

allow a proper separation of the dry and the wet weather uncertainties.487

We need to be aware that this study focuses strongly on the correct prediction488

of the overflow risk to improve the real-time control of sewer systems. The methods489

suggested for the prediction of these risks, however, are also applicable in other con-490

texts of the urban drainage system, such as the prediction of the critical operational491

states at a wastewater treatment plant, the risk of flooding induced by overloading of492
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the sewer system, and the risk of microbial pollution as a result of sewer overflows493

close to bathing areas.494
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