273 research outputs found

    Stripe formation in bacterial systems with density-suppressed motility

    Get PDF
    Engineered bacteria in which motility is reduced by local cell density generate periodic stripes of high and low density when spotted on agar plates. We study theoretically the origin and mechanism of this process in a kinetic model that includes growth and density-suppressed motility of the cells. The spreading of a region of immotile cells into an initially cell-free region is analyzed. From the calculated front profile we provide an analytic ansatz to determine the phase boundary between the stripe and the no-stripe phases. The influence of various parameters on the phase boundary is discussed.Comment: 5 pages, 3 figures. Phys. Rev. Lett. in press (2012

    Sequential establishment of stripe patterns in an expanding cell population

    Get PDF
    Periodic stripe patterns are ubiquitous in living organisms, yet the underlying developmental processes are complex and difficult to disentangle. We describe a synthetic genetic circuit that couples cell density and motility. This system enabled programmed Escherichia coli cells to form periodic stripes of high and low cell densities sequentially and autonomously. Theoretical and experimental analyses reveal that the spatial structure arises from a recurrent aggregation process at the front of the continuously expanding cell population. The number of stripes formed could be tuned by modulating the basal expression of a single gene. The results establish motility control as a simple route to establishing recurrent structures without requiring an extrinsic pacemaker.published_or_final_versio

    A hybrid Si@FeSiy/SiOx anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis

    Get PDF
    Synthesised via planetary ball-milling of Si and Fe powders in an ammonia (NH3) environment, a hybrid Si@FeSiy/SiOx structure shows exceptional electrochemical properties for lithium-ion battery anodes, exhibiting a high initial capacity of 1150 mA h g−1 and a retention capacity of 880 mA h g−1 after 150 cycles at 100 mA g−1; and a capacity of 560 mA h g−1 at 4000 mA g−1. These are considerably high for carbon-free micro-/submicro-Si-based anodes. NH3 gradually turns into N2 and H2 during the synthesis, which facilitates the formation of highly conductive FeSiy (y = 1, 2) phases, whereas such phases were not formed in an Ar atmosphere. Milling for 20–40 h leads to partial decomposition of NH3 in the atmosphere, and a hybrid structure of a Si core of mixed nanocrystalline and amorphous Si domains, shelled by a relatively thick SiOx layer with embedded FeSi nanocrystallites. Milling for 60–100 h results in full decomposition of NH3 and a hybrid structure of a much-refined Si-rich core surrounded by a mantle of a relatively low level of SiOx and a higher level of FeSi2. The formation mechanisms of the SiOx and FeSiy phases are explored. The latter structure offers an optimum combination of the high capacity of a nanostructural Si core, relatively high electric conductivity of the FeSiy phase and high structural stability of a SiOx shell accommodating the volume change for high performance electrodes. The synthesis method is new and indispensable for the large-scale production of high-performance Si-based anode materials

    Wideband-adjustable reflection-suppressed rejection filters using chirped and tilted fiber gratings

    Get PDF
    Wideband-adjustable band-rejection filters based on chirped and tilted fiber Bragg gratings (CTFBG) are proposed and experimentally demonstrated. The flexible chirp-rate and wide tilt-angle provide the gratings with broadband filtering functions over a large range of bandwidths (from 10 nm to 150 nm), together with a low insertion loss (less than 1dB) and a negligible back-reflection (lower than -20 dB). The slope profile of CTFBG in transmission can be easily tailored by adjusting the tilt angle, grating irradiation time and chirp rate-grating factor, and it is insensitive to the polarization state of the input light, as well as to temperature, axial strain and surrounding refractive index. Furthermore, by coating the CTFBG with a suitable polymer (whose refractive index is close to that of the cladding glass), the cladding modes no longer form we

    Purification and characterization of native human insulin-like growth factor binding protein-6

    Get PDF
    Insulin-like growth factor binding proteins (IGFBPs) are key regulators of insulin-like growth factor (IGF) mediated signal transduction and thereby can profoundly influence cellular phenotypes and cell fate. Whereas IGFBPs are extracellular proteins, intracellular activities were described for several IGFBP family members, such as IGFBP-3, which can be reinternalized by endocytosis and reaches the nucleus through routes that remain to be fully established. Within the family of IGFBPs, IGFBP-6 is unique for its specific binding to IGF-II. IGFBP-6 was described to possess additional IGF-independent activities, which have in part been attributed to its translocation to the nucleus; however, cellular uptake of IGFBP-6 was not described. To further explore IGFBP-6 functions, we developed a new method for the purification of native human IGFBP-6 from cell culture supernatants, involving a four-step affinity purification procedure, which yields highly enriched IGFBP-6. Whereas protein purified in this way retained the capacity to interact with IGF-II and modulate IGF-dependent signal transduction, our data suggest that, unlike IGFBP-3, human IGFBP-6 is not readily internalized by human tumor cells. To summarize, this work describes a novel and efficient method for the purification of native human insulin-like growth factor binding protein 6 (IGFBP-6) from human cell culture supernatants, applying a four-step chromatography procedure. Intactness of purified IGFBP-6 was confirmed by IGF ligand Western blot and ability to modulate IGF-dependent signal transduction. Cellular uptake studies were performed to further characterize the purified protein, showing no short-term uptake of IGFBP-6, in contrast to IGFBP-3

    Honokiol Induces Calpain-Mediated Glucose-Regulated Protein-94 Cleavage and Apoptosis in Human Gastric Cancer Cells and Reduces Tumor Growth

    Get PDF
    Background. Honokiol, a small molecular weight natural product, has been shown to possess potent anti-neoplastic and anti-angiogenic properties. Its molecular mechanisms and the ability of anti-gastric cancer remain unknown. It has been shown that the anti-apoptotic function of the glucose-regulated proteins (GRPs) predicts that their induction in neoplastic cells can lead to cancer progression and drug resistance. We explored the effects of honokiol on the regulation of GRPs and apoptosis in human gastric cancer cells and tumor growth. Methodology and Principal Findings. Treatment of various human gastric cancer cells with honokiol led to the induction of GRP94 cleavage, but did not affect GRP78. Silencing of GRP94 by small interfering RNA (siRNA) could induce cell apoptosis. Treatment of cells with honokiol or chemotherapeutics agent etoposide enhanced the increase in apoptosis and GRP94 degradation. The calpain activity and calpain-II (m-calpain) protein (but not calpain-I (mu-calpain)) level could also be increased by honokiol. Honokiol-induced GRP94 down-regulation and apoptosis in gastric cancer cells could be reversed by siRNA targeting calpain-II and calpain inhibitors. Furthermore, the results of immunofluorescence staining and immunoprecipitation revealed a specific interaction of GRP94 with calpain-II in cells following honokiol treatment. We next observed that tumor GRP94 over-expression and tumor growth in BALB/c nude mice, which were inoculated with human gastric cancer cells MKN45, are markedly decreased by honokiol treatment. Conclusions and Significance. These results provide the first evidence that honokiol-induced calpain-II-mediated GRP94 cleavage causes human gastric cancer cell apoptosis. We further suggest that honokiol may be a possible therapeutic agent to improve clinical outcome of gastric cancer

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV

    Get PDF
    We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let
    corecore