176 research outputs found

    Neutral carbon in the Egg Nebula (AFGL 2688)

    Get PDF
    A search for sub-mm C I emission from seven stars that are surrounded by dense molecular gas shells led to the detection, in the case of the "Egg Nebula' (AFGL 2688), of an 0.9 K line implying a C I/CO value greater than 5. The material surrounding this star must be extremely carbon-rich, and it is suggested that the apparently greater extent of the C I emission region may be due to the effects of the galactic UV field on the shell's chemistry, as suggested by Huggins and Glassgold (1982)

    The molecular clump towards the eastern border of SNR G18.8+0.3

    Full text link
    The eastern border of the SNR G18.8+0.3, close to an HII regions complex, is a very interesting region to study the molecular gas that it is probably in contact with the SNR shock front. We observed the aforementioned region using the Atacama Submillimeter Telescope Experiment (ASTE) in the 12CO J=3-2, 13CO J=3-2, HCO+ J=4-3, and CS J=7-6 lines with an angular resolution of 22". To complement these observations, we analyzed IR, submillimeter and radio continuum archival data. In this work, we clearly show that the radio continuum "protrusion" that was early thought to belong to the SNR is an HII regions complex deeply embedded in a molecular clump. The new molecular observations reveal that this dense clump, belonging to an extended molecular cloud that surrounds the SNR southeast border, is not physically in contact with SNR G18.8+0.3, suggesting that the SNR shock front have not yet reached it or maybe they are located at different distances. We found some young stellar objects embedded in the molecular clump, suggesting that their formation should be approximately coeval with the SN explosion.Comment: Accepted for publication in A&A (Sept. 7, 2012

    Infrared Instrumentation and Astronomy

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program (Contract DAAB07-76-C-1400)National Aeronautics and Space Administration (Grant NGR 22-009-526)National Aeronautics and Space Administration (Grant NSG-7328)National Aeronautics and Space Administration (Contract NAS5-24096

    Dynamic Power Convertor Development for Radioisotope Power Systems at NASA Glenn Research Center

    Get PDF
    The Thermal Energy Conversion Branch at NASA Glenn Research Center (GRC) is supporting the development of high-efficiency power convertors for use in Radioisotope Power Systems (RPS). Significant progress was made towards such a system that utilized Stirling conversion during the 2001 to 2015 timeframe. Flight development of the Advanced Stirling Radioisotope Generator (ASRG) was cancelled in 2013 by the Department of Energy (DOE) and NASA Headquarters primarily due to budget constraints, and the Advanced Stirling Convertor (ASC) technology contract was subsequently concluded in 2015. A new chapter of technology development has recently been initiated by the NASA RPS Program. This effort is considering all dynamic power convertor options, such as Stirling and Brayton cycles. Four convertor development contracts supporting this effort were awarded in 2017. The awarded contracts include two free-piston Stirling, one thermoacoustic Stirling, and one turbo-Brayton designs. The technology development contracts each consist of up to three phases: Design, Fabricate, and Test. As of May 2018, all contracts have completed the Design Phase, and each underwent a design review with an independent review board. Three of the contracts are planned to execute the Phase 2 option for fabrication. Convertors manifesting from these development efforts will then undergo independent validation and verification at NASA facilities, which will consist of convertor performance and RPS viability demonstrations. Example tests include launch vibration simulation, performance mapping over the environmental temperature range, and static acceleration exposure. In parallel with this renewed development effort, NASA GRC is still demonstrating free-piston Stirling convertor technology using assets from previous projects. The Stirling Research Laboratory (SRL) is still operating several convertors from previous development projects which have similarities and relevance to current contract designs. Four of which are flexure-bearing based, and another six are gas-bearing based. One of the flexure-bearing convertors has accumulated over 110,000 hours of operation, and holds the current record for maintenance-free heat-engine run-time. Another flexure-bearing convertor was recently manually shutdown after 105,620 hours of operation, then disassembled and inspected. This inspection produced a wealth of information about the effects of this amount of runtime on the technology's components. One of the engineering unit flexure-bearing convertors recently underwent launch simulation vibration test, a static acceleration exposure up to 20 g, and was then placed on extended operation. Amongst the gas-bearing convertors, the longest running unit has accumulated over 70,000 hours of operation. Four high-fidelity gas-bearing convertors from the ASRG project are still operating continuously, for which the longest runtime has reached 28,000 hours

    Ultrastructural and functional fate of recycled vesicles in hippocampal synapses

    Get PDF
    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution

    Herschel observations of EXtra-Ordinary Sources: The Terahertz spectrum of Orion KL seen at high spectral resolution

    Get PDF
    We present the first high spectral resolution observations of Orion KL in the frequency ranges 1573.4 - 1702.8 GHz (band 6b) and 1788.4 - 1906.8 GHz (band 7b) obtained using the HIFI instrument on board the Herschel Space Observatory. We characterize the main emission lines found in the spectrum, which primarily arise from a range of components associated with Orion KL including the hot core, but also see widespread emission from components associated with molecular outflows traced by H2O, SO2, and OH. We find that the density of observed emission lines is significantly diminished in these bands compared to lower frequency Herschel/HIFI bands.Comment: Accepted for publication in the Herschel HIFI special issue of Astronomy and Astrophysics Letters, 5 pages, 3 figure

    On the internal structure of starless cores. II. A molecular survey of L1498 and L1517B

    Get PDF
    [Abridged] We present a molecular survey of the starless cores L1498 and L1517B. These cores have been selected for their relative isolation and close-to-round shape, and they have been observed in a number of lines of 13 molecular species (4 already presented in the first part of this series): CO, CS, N2H+, NH3, CH3OH, SO, C3H2, HC3N, C2S, HCN, H2CO, HCO+, and DCO+. Using a physical model of core structure and a Monte Carlo radiative transfer code, we determine for each core a self-consistent set abundances that fits simultaneously the observed radial profile of integrated intensity and the emergent spectrum towards the core center (for abundant species, optically thin isopologues are used). From this work, we find that L1498 and L1517B have similar abundance patterns, with most species suffering a significant drop toward the core center. This occurs for CO, CS, CH3OH, SO, C3H2, HC3N, C2S, HCN, H2CO, HCO+, and DCO+, which we fit with profiles having a sharp central hole. The size of this hole varies with molecule: DCO+, HCN, and HC3N have the smallest holes while SO, C2S and CO have the largest holes. Only N2H+ and NH3 are present in the gas phase at the core centers. From the different behavior of molecules, we select SO, C2S, and CH3OH as the most sensitive tracers of molecular depletion. Comparing our abundance determinations with the predictions from current chemical models we find order of magnitude discrepancies. Finally, we show how the ``contribution function'' can be used to study the formation of line profiles from the different regions of a core.Comment: 22 pages, 12 figures, A&A accepte

    Optical and submillimetre observations of Bok globules -- tracing the magnetic field from low to high density

    Full text link
    We present optical and submillimetre polarimetry data of the Bok globule CB3 and optical polarimetry data of the Bok globule CB246. We use each set of polarimetry data to infer the B-field orientation in each of the clouds. The optical data can only be used in the low density, low extinction edge regions of clouds. The submillimetre data can only be used in the high column-density, central regions of the clouds. It has previously been found that near-infrared polarisation mapping of background stars does not accurately trace the magnetic field in dense cloud regions. This may be due to a lack of aligned grains in dense regions. We test this by comparing the field orientations measured by our two independent polarimetry methods. We find that the field orientation deduced from the optical data matches up well with the orientation estimated from the submillimetre data. We therefore claim that both methods are accurately tracing the same magnetic field in CB3. Hence, in this case, there must be significant numbers of aligned dust grains in the high density region, and they do indeed trace the magnetic field in the submillimetre. We find an offset of 40±\pm14 degrees between the magnetic field orientation and the short axis of the globule. This is consistent with the mean value of 31±\pm3 degrees found in our previous work on prestellar cores, even though CB3 is a protostellar core. Taken together, the six prestellar cores that we have now studied in this way show a mean offset between magnetic field orientation and core short axis of ∌30±\sim30\pm3 degrees, in apparent contradiction with some models of magnetically dominated star formation.Comment: 8 pages, 3 figures, accepted for publication in MNRA
    • 

    corecore