224 research outputs found

    Functional Diversity of Photosynthetic Light Use of 16 Vascular Epiphyte Species Under Fluctuating Irradiance in the Canopy of a Giant Virola michelii (Myristicaceae) Tree in the Tropical Lowland Forest of French Guyana

    Get PDF
    Here we present the first study, in which a large number of different vascular epiphyte species were measured for their photosynthetic performance in the natural environment of their phorophyte in the lowland rainforest of French Guyana. More than 70 epiphyte species covered the host tree in a dense cover. Of these, the photosynthesis of 16 abundant species was analyzed intensely over several months. Moreover, the light environment was characterized with newly developed light sensors that recorded continuously and with high temporal resolution light intensity next to the epiphytes. Light intensity was highly fluctuating and showed great site specific spatio-temporal variations of photosynthetic photon flux. Using a novel computer routine we quantified the integrated light intensity the epiphytes were exposed to in a 3 h window and we related this light intensity to measurements of the actual photosynthetic status. It could be shown that the photosynthetic apparatus of the epiphytes was well adapted to the quickly changing light conditions. Some of the epiphytes were chronically photoinhibited at predawn and significant acute photoinhibition, expressed by a reduction of potential quantum efficiency (Fv/Fm)30′, was observed during the day. By correlating (Fv/Fm)30′ to the integrated and weighted light intensity perceived during the previous 3 h, it became clear that acute photoinhibition was related to light environment prior to the measurements. Additionally photosynthetic performance was not determined by rain events, with the exception of an Aechmea species. This holds true for all the other 15 species of this study and we thus conclude that actual photosynthesis of these tropical epiphytes was determined by the specific and fluctuating light conditions of their microhabitat and cannot be simply attributed to light-adapted ancestors

    Den industrielle symbioses koordinerende organ

    Get PDF

    Functional resilience against climate-driven extinctions: comparing the functional diversity of European and North Americantree floras

    Get PDF
    Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 traits for 154 North American and 66 European tree species and grid-based co-occurrences derived from distribution maps to compare functional diversity patterns of the two continents. First, we identified similar regions with respect to contemporary climate in the temperate zone of North America and Europe. Second, we compared the functional diversity of both continents and for the climatically similar subregions using the functional dispersion-index (FDis) and the functional richness index (FRic). Third, we accounted in these comparisons for grid-scale differences in species richness, and, fourth, investigated the associated trait spaces using dimensionality reduction. For gymnosperms we find similar functional diversity on both continents, whereas for angiosperms functional diversity is significantly greater in Europe than in North America. These results are consistent across different scales, for climatically similar regions and considering species richness patterns. We decomposed these differences in trait space occupation into differences in functional diversity vs. differences in functional identity. We show that climate-driven species loss on a continental scale might be decoupled from or at least not linearly related to changes in functional diversity. This might be important when analyzing the effects of climate-driven biodiversity change on ecosystem functioning

    Functional traits influence patterns in vegetative and reproductive plant phenology – a multi-botanical garden study

    Get PDF
    1. Phenology has emerged as key indicator of the biological impacts of climate change, yet the role of functional traits constraining variation in herbaceous species’ phenology has received little attention. Botanical gardens are ideal places in which to investigate large numbers of species growing under common climate conditions. We ask whether interspecific variation in plant phenology is influenced by differences in functional traits. 2. We recorded onset, end, duration and intensity of initial growth, leafing out, leaf senescence, flowering and fruiting for 212 species across five botanical gardens in Germany. We measured functional traits, including plant height, absolute and specific leaf area, leaf dry matter content, leaf carbon and nitrogen content and seed mass and accounted for species’ relatedness. 3. Closely related species showed greater similarities in timing of phenological events than expected by chance, but species' traits had a high degree of explanatory power, pointing to paramount importance of species’ life-history strategies. Taller plants showed later timing of initial growth, and flowered, fruited and underwent leaf senescence later. Large-leaved species had shorter flowering and fruiting durations. 4. Taller, large-leaved species differ in their phenology and are more competitive than smaller, small-leaved species. We assume climate warming will change plant communities’ competitive hierarchies with consequences for biodiversity

    The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens

    Get PDF
    Changes in phenology induced by climate change occur across the globe with important implications for ecosystem functioning and services, species performance and trophic interactions. Much of the work on phenology, especially leaf out and flowering, has been conducted on woody plant species. Less is known about the responses in phenology of herbaceous species induced by global change even though they represent a large and important part of biodiversity worldwide. A globally coordinated research effort is needed to understand the drivers and implications of such changes and to predict effects of global change on plant species phenology and related ecosystem processes. Here, we present the rationale of the PhenObs initiative-botanical gardens as a global phenological observation network. The initiative aims to collect data on plant phenology in botanical gardens which will be used alongside information on plant traits and site conditions to answer questions related to the consequences of global change: What is the variation in plant phenology in herbaceous species across the growing season and in response to changes in climate? How can plant phenology be predicted from species' trait composition, provenance, position and extent of the distribution range and species' phylogeny? What are the implications of this variation with respect to species performance and assembly, biotic interactions (e.g. plant-pollinator interactions) as well as ecosystem processes and services under changing land use and climate? Here, we lay out the development of a straightforward protocol that is appropriate for monitoring phenology across a vast diversity of growth forms of herbaceous species from various habitats and geographical regions. To focus on a key number of stages necessary to capture all aspects of plant species phenology, we analysed associations between 14 phenological stages. These data were derived from a 2-year study on 199 species in four German botanical gardens. Based on the relationships of the phenological stages, we propose to monitor three vegetative stages ('initial growth', 'leaves unfolding' and 'senescence') and two reproductive stages ('flowers open' and 'ripe fruits') to fully capture herbaceous species phenology. A free Plain Language Summary can be found within the Supporting Information of this article

    Don't Stop Thinking About Leptoquarks: Constructing New Models

    Full text link
    We discuss the general framework for the construction of new models containing a single, fermion number zero scalar leptoquark of mass 200220\simeq 200-220 GeV which can both satisfy the D0/CDF search constraints as well as low energy data, and can lead to both neutral and charged current-like final states at HERA. The class of models of this kind necessarily contain new vector-like fermions with masses at the TeV scale which mix with those of the Standard Model after symmetry breaking. In this paper we classify all models of this type and examine their phenomenological implications as well as their potential embedding into SUSY and non-SUSY GUT scenarios. The general coupling parameter space allowed by low energy as well as collider data for these models is described and requires no fine-tuning of the parameters.Comment: Modified text, added table, and updated reference

    Authorities' Coercive and Legitimate Power:The Impact on Cognitions Underlying Cooperation

    Get PDF
    The execution of coercive and legitimate power by an authority assures cooperation and prohibits free-riding. While coercive power can be comprised of severe punishment and strict monitoring, legitimate power covers expert, and informative procedures. The perception of these powers wielded by authorities stimulates specific cognitions: trust, relational climates, and motives. With four experiments, the single and combined impact of coercive and legitimate power on these processes and on intended cooperation of n1 = 120, n2 = 130, n3 = 368, and n4 = 102 student participants is investigated within two exemplary contexts (tax contributions, insurance claims). Findings reveal that coercive power increases an antagonistic climate and enforced compliance, whereas legitimate power increases reason-based trust, a service climate, and voluntary cooperation. Unexpectedly, legitimate power is additionally having a negative effect on an antagonistic climate and a positive effect on enforced compliance; these findings lead to a modification of theoretical assumptions. However, solely reason-based trust, but not climate perceptions and motives, mediates the relationship between power and intended cooperation. Implications for theory and practice are discussed.© 2017 Hofmann, Hartl, Gangl, Hartner-Tiefenthaler and Kirchle

    Impact of time since last caloric intake on blood glucose levels

    Get PDF
    Blood glucose (BG) is usually measured after a caloric restriction of at least 8 h; however evidence-based recommendations for the duration of a fasting status are missing. Here we analyze the effect of fasting duration on levels of BG to determine the minimal fasting duration to achieve comparable BG levels to conventional fasting measurements. We used data of a cross-sectional study on primary care patients, performed in October 2005. We included 28,024 individuals (age-range 18–99 years; 63% women) without known diabetes mellitus and without missing data for BG and fasting status. We computed general linear models, adjusting for age, sex, time of blood withdrawal, systolic blood pressure, waist circumference, total- and HDL-cholesterol, physical activity, smoking, intake of beta-blocker and alcohol. We tested the intra-individual variability with respect to fasting status. Overall, the mean BG differed only slightly between individuals fasting ≥8 h and those fasting <8 h (men: 5.1 ± 0.8 mmol/L versus 5.2 ± 1.2 mmol/L; women: 4.9 ± 0.7 mmol/L, 5.0 ± 1.0 mmol/L). After 3 h of fasting differences of BG diminished in men to −0.08 mmol/L (95%-CI: −0.15; −0.01 mmol/L), in women to −0.07 mmol/L (−0.12; −0.03 mmol/L) compared to individuals fasting ≥8 h. Noteworthy, age, time of day of blood withdrawal, physical activity, and intake of hard liquor influenced BG levels considerably. Our data challenge the necessity for a fasting duration of ≥8 h when measuring blood glucose, suggesting a random sampling or a fasting duration of 3 h as sufficient. Rather, our study indicates that essentially more effort on the assessment of additional external/internal factors on BG levels is necessary

    Changing practices: The specialised domestic violence court process

    Get PDF
    Specialised domestic violence courts, initially developed in the United States of America, have been recognised by other jurisdictions including Canada, Australia and the United Kingdom. This article presents a case study of K Court in Toronto, drawing upon documentary evidence, direct observations and interviews with key informants. It is argued that the specialised domestic violence court process includes changing practices of some of the key stakeholders. Learning lessons from abroad can offer jurisdictions insights that can steer implementation of appropriate practices in the field
    corecore