8 research outputs found

    Genomic transformation and social organization during the Copper Age–Bronze Age transition in southern Iberia

    Get PDF
    The emerging Bronze Age (BA) of southeastern Iberia saw marked social changes. Late Copper Age (CA) settlements were abandoned in favor of hilltop sites, and collective graves were largely replaced by single or double burials with often distinctive grave goods indirectly reflecting a hierarchical social organization, as exemplified by the BA El Argar group. We explored this transition from a genomic viewpoint by tripling the amount of data available for this period. Concomitant with the rise of El Argar starting ~2200 cal BCE, we observe a complete turnover of Y-chromosome lineages along with the arrival of steppe-related ancestry. This pattern is consistent with a founder effect in male lineages, supported by our finding that males shared more relatives at sites than females. However, simple two-source models do not find support in some El Argar groups, suggesting additional genetic contributions from the Mediterranean that could predate the BA.Introduction Results - Genetic substructure in the Iberian CA - Genetic turnover in the southern Iberian BA and the rise of El Argar - Mediterranean and central European ancestries shaped the genetic profile of southeastern BA groups in Iberia - A late Argar genetic outlier makes links to North Africa and the central Mediterranean - Insights into phenotypic variation, demography, and social correlates of CA and EBA El Argar societies Discussion Material and method

    Genomic transformation and social organization during the Copper Age-Bronze Age transition in southern Iberia

    Get PDF
    The emerging Bronze Age (BA) of southeastern Iberia saw marked social changes. Late Copper Age (CA) settlements were abandoned in favor of hilltop sites, and collective graves were largely replaced by single or double burials with often distinctive grave goods indirectly reflecting a hierarchical social organization, as exemplified by the BA El Argar group. We explored this transition from a genomic viewpoint by tripling the amount of data available for this period. Concomitant with the rise of El Argar starting ~2200 cal BCE, we observe a complete turnover of Y-chromosome lineages along with the arrival of steppe-related ancestry. This pattern is consistent with a founder effect in male lineages, supported by our finding that males shared more relatives at sites than females. However, simple two-source models do not find support in some El Argar groups, suggesting additional genetic contributions from the Mediterranean that could predate the BA

    Emblems and spaces of power during the Argaric Bronze Age at La Almoloya, Murcia

    No full text
    The recent discovery of an exceptionally rich grave at La Almoloya in south-eastern Spain illuminates the political context of Early Bronze Age El Argar society. The quantity, variety and opulence of the grave goods emphasise the technological, economic and social dimensions of this unique culture. The assemblage includes politically and ideologically emblematic objects, among which a silver diadem stands out. Of equally exceptional character is the building under which the grave was found—possibly one of the first Bronze Age palaces identified in Western Europe. The architecture and artefacts from La Almoloya provide new insight into emblematic individuals and the exercise of power in societies of marked economic asymmetry.Introduction Argaric diadems as embodied emblems La Almoloya grave 38 Spaces of power Conclusion

    The maternal genetic make-up of the Iberian Peninsula between the Neolithic and the Early Bronze Age

    Get PDF
    Agriculture first reached the Iberian Peninsula around 5700 BCE. However, little is known about the genetic structure and changes of prehistoric populations in different geographic areas of Iberia. In our study, we focus on the maternal genetic makeup of the Neolithic (~ 5500–3000 BCE), Chalcolithic (~ 3000–2200 BCE) and Early Bronze Age (~ 2200–1500 BCE). We report ancient mitochondrial DNA results of 213 individuals (151 HVS-I sequences) from the northeast, central, southeast and southwest regions and thus on the largest archaeogenetic dataset from the Peninsula to date. Similar to other parts of Europe, we observe a discontinuity between hunter-gatherers and the first farmers of the Neolithic. During the subsequent periods, we detect regional continuity of Early Neolithic lineages across Iberia, however the genetic contribution of hunter-gatherers is generally higher than in other parts of Europe and varies regionally. In contrast to ancient DNA findings from Central Europe, we do not observe a major turnover in the mtDNA record of the Iberian Late Chalcolithic and Early Bronze Age, suggesting that the population history of the Iberian Peninsula is distinct in character.Concerning research in the Alto Ribatejo, authors wish to thank Fundação para a Ciência e Tecnologia the support of research on the dawn of farming in the Tagus valley (project “Moving Tasks Accross Shapes” – PTDC/EPH-ARQ/4356/2014), as well as the Geosciences Centre of Coimbra University (strategic project UID/Multi/00073/2013). This study was funded by the German Research Foundation (Grant no. Al 287/14–1)

    The maternal genetic make-up of the Iberian Peninsula between the Neolithic and the Early Bronze Age

    Get PDF
    Abstract Agriculture first reached the Iberian Peninsula around 5700 BCE. However, little is known about the genetic structure and changes of prehistoric populations in different geographic areas of Iberia. In our study, we focus on the maternal genetic makeup of the Neolithic (~ 5500–3000 BCE), Chalcolithic (~ 3000–2200 BCE) and Early Bronze Age (~ 2200–1500 BCE). We report ancient mitochondrial DNA results of 213 individuals (151 HVS-I sequences) from the northeast, central, southeast and southwest regions and thus on the largest archaeogenetic dataset from the Peninsula to date. Similar to other parts of Europe, we observe a discontinuity between hunter-gatherers and the first farmers of the Neolithic. During the subsequent periods, we detect regional continuity of Early Neolithic lineages across Iberia, however the genetic contribution of hunter-gatherers is generally higher than in other parts of Europe and varies regionally. In contrast to ancient DNA findings from Central Europe, we do not observe a major turnover in the mtDNA record of the Iberian Late Chalcolithic and Early Bronze Age, suggesting that the population history of the Iberian Peninsula is distinct in character
    corecore