317 research outputs found

    Comparative developmental osteology of the seahorse skeleton reveals heterochrony amongst Hippocampus sp. and progressive caudal fin loss

    Get PDF
    Background: Seahorses are well known for their highly derived head shape, prehensile tail and armoured body. They belong to the family of teleosts known as Syngnathidae, which also includes the pipefishes, pipehorses and seadragons. Very few studies have investigated the development of the skeleton of seahorses because larvae are extremely difficult to obtain in the wild and breeding in captivity is rarely successful. Here we compare the developmental osteology of Hippocampus reidi over an ontogenetic series spanning the first 93 days after release from the brood pouch to that of a smaller series of Hippocampus; namely H. subelongatus. Results: We compare the osteology in these two species over growth to the published description of the dwarf species, H. zosterae. We show that ossification onset in H. subelongatus is earlier than in H. reidi, despite similar sizes at parturition. Interestingly, the timing of development of the bony skeleton in H. zosterae is similar to that of the larger species, H. subelongatus. Furthermore, we show that the growth rate of all three species is similar up until about 30 days post pouch release. From this stage onwards in the life history, the size of the dwarf species H. zosterae remains relatively constant whilst the other two species continue growing with an accelerated growth phase. Conclusion: This data together with a phylogenetic assessment suggests that there has been a heterochronic shift (a delay) in the timing of ossification in H. reidi and accelerated bonedevelopment in H. zosterae. That is, H. zosterae is not a developmentally truncated dwarf species but rather a smaller version of its larger ancestor, "a proportioned dwarf" species. Furthermore, we show that caudal fin loss is incomplete in Hippocampus seahorses. This study shows that these three species of Hippocampus seahorses have evolved (either directly or indirectly) different osteogenic strategies over the last 20-30 million years of seahorse evolution

    Analysis of dental pathologies in the Pliocene herbivores of Langebaanweg and their palaeoenvironmental implications

    Get PDF
    Bibliography: leaves 228-243.This study evaluates the extent of dental pathologies in several ungulate species from the Pelletal Phosphate Member (PPM) at Langebaanweg, and uses this analysis, along with stable isotope analyses, to obtain fresh insight into the local palaeoenvironment during the Early Pliocene

    Angiogenesis Meets Skeletogenesis: The Cross-Talk between Two Dynamic Systems

    Get PDF
    In this chapter, we describe the complex relationship between angiogenesis and skeletogenesis. While much is known about the interactions of these two dynamic systems for bones that ossify via a cartilage template, comparatively little is known about directly ossifying bones. Most of the bones of the head develop from osteogenic condensations and undergo intramembranous (direct) ossification during development. Our understanding of the relationship between osteogenic cell condensations (in particular) and angiogenesis is currently inadequate and prevents a comprehensive understanding of vertebrate head development. This chapter highlights our understanding of both direct and indirectly ossifying bones shedding light on where there are important gaps in our understanding

    Perturbing the developing skull: using laser ablation to investigate the robustness of the infraorbital bones in zebrafish (Danio rerio)

    Get PDF
    Publisher's Version/PDFBackground: The development of the craniofacial skeleton from embryonic mesenchyme is a complex process that is not yet completely understood, particularly for intramembranous bones. This study investigates the development of the neural crest derived infraorbital (IO) bones of the zebrafish (Danio rerio) skull. Located under the orbit, the IO bones ossify in a set sequence and are closely associated with the lateral line system. We conducted skeletogenic condensation and neuromast laser ablation experiments followed by shape analyses in order to investigate the relationship between a developing IO bone and the formation of the IO series as well as to investigate the highly debated inductive potential of neuromasts for IO ossification. Results: We demonstrate that when skeletogenic condensations recover from laser ablation, the resulting bone differs in shape compared to controls. Interestingly, neighbouring IO bones in the bone series are unaffected. In addition, we show that the amount of canal wall mineralization is significantly decreased following neuromast laser ablation at juvenile and larval stages. Conclusions: These results highlight the developmental robustness of the IO bones and provide direct evidence that canal neuromasts play a role in canal wall development in the head. Furthermore, we provide evidence that the IO bones may be two distinct developmental modules. The mechanisms underlying developmental robustness are rarely investigated and are important to increase our understanding of evolutionary developmental biology of the vertebrate skull

    A taste of the deep-sea: The roles of gustatory and tactile searching behaviour in the grenadier fish <i>Coryphaenoides armatus</i>

    Get PDF
    The deep-sea grenadier fishes (Coryphaenoides spp.) are among the dominant predators and scavengers in the ocean basins that cover much of Earth's surface. Baited camera experiments were used to study the behaviour of these fishes. Despite the apparent advantages of rapidly consuming food, grenadiers attracted to bait spend a large proportion of their time in prolonged periods of non-feeding activity. Video analysis revealed that fish often adopted a head-down swimming attitude (mean of 21.3 degrees between the fish and seafloor), with swimming velocity negatively related to attitude. The fish also swam around and along vertical and horizontal structures of the lander with their head immediately adjacent to the structure. We initially hypothesised that this behaviour was associated with the use of the short chin barbel in foraging. Barbel histology showed numerous taste buds in the skin, and a barbel nerve with about 20,000 axons in adult fish. A tracing experiment in one undamaged animal revealed the termination fields of the barbel neurons in the trigeminal and rhombencephalic regions, indicating both a mechanoreceptory and a gustatory role for the barbel. Our conclusion was that olfactory foraging becomes ineffective at close ranges and is followed by a search phase using tactile and gustatory sensing by the barbel. The development of this sensory method probably co-evolved alongside behavioural changes in swimming mechanics to allow postural stability at low swimming speeds

    Osteocytes Serve as a Progenitor Cell of Osteosarcoma

    Full text link
    Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO‐Y4, a SV‐40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO‐Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors. J. Cell. Biochem. 115: 1420–1429, 2014. © 2014 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107570/1/jcb24793.pd

    Stable isotopic composition of fossil mammal teeth and environmental change in southwestern South Africa during the Pliocene and Pleistocene

    Get PDF
    The past 5 million years mark a global change from the warmer, more stable climate of the Pliocene to the initiation of glacial-interglacial cycles during the Pleistocene. Marine core sediment records located off the coast of southwestern Africa indicate aridification and intensified upwelling in the Benguela Current over the Pliocene and Pleistocene. However, few terrestrial records document environmental change in southwestern Africa over this time interval. Here we synthesize new and published carbon and oxygen isotope data of the teeth from large mammals (>6 kg) at Langebaanweg (~5 million years ago, Ma), Elandsfontein (1.0 – 0.6 Ma), and Hoedjiespunt (0.35 – 0.20 Ma), to evaluate environmental change in southwestern Africa between the Pliocene and Pleistocene. The majority of browsing and grazing herbivores from these sites yield enamel 13 C values within the range expected for animals with a pure C3 diet, however some taxa have enamel 13C values that suggest the presence of small amounts C4 grasses at times during the Pleistocene. Considering that significant amounts of C4 grasses require a warm growing season, these results indicate that the winter rainfall zone, characteristic of the region today, could have been in place for the past 5 million years. The average 18O value of the herbivore teeth increases ~4.4‰ between Langebaanweg and Elandsfontein for all taxa except suids. This increase may solely be a function of a change in hydrology between the fluvial system at Langebaanweg and the spring-fed environments at Elandsfontein, or a combination of factors that include depositional context, regional circulation and global climate. However, an increase in regional aridity or global cooling between the early Pliocene and mid-Pleistocene cannot explain the entire increase in enamel 18O values. Spring-fed environments like those at Elandsfontein may have 75 provided critical resources for mammalian fauna in the mid-Pleistocene within an increasingly arid southwestern Africa ecosystem

    Human Sclera Maintains Common Characteristics with Cartilage throughout Evolution

    Get PDF
    BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia

    Weighted parsimony phylogeny of the family Characidae (Teleostei: Characiformes)

    Get PDF
    The family Characidae, including more than 1000 species, lacks a phylogenetic diagnosis, with many of its genera currently considered as incertae sedis. The aims of the present study are to propose a phylogenetic diagnosis and to assess higher-level relationships of and within Characidae. In this regard, 360 morphological characters are studied for 160 species of Characidae and related families. Phylogenetic analyses under implied weighting and self-weighted optimization are presented, exploring a broad range of parameters. The analysis under self-weighted optimization is innovative for this size of matrices. Familial status of Serrasalmidae is supported, and Acestrorhynchidae and Cynodontidae are included in a monophyletic Characidae. Engraulisoma taeniatum is transferred from Characidae to Gasteropelecidae. Thus constituted, the monophyly of Characidae is supported by seven synapomorphies. A new subfamily, Heterocharacinae, is proposed, and the subfamilies Aphyocharacinae, Aphyoditeinae, Characinae, Gymnocharacinae, and Stevardiinae are redefined. The Glandulocaudinae are included in Stevardiinae together with remaining members of ‘‘clade A’’ (sensu Malabarba and Weitzman, 2003. Comun. Mus. Ciênc. Tecnol. PUCRS, Sér. Zool. 16, 67–151.) and the genera Aulixidens and Nantis. Most incertae sedis genera are assigned, at least tentatively, to a phylogenetically diagnosed clade.Fil: Mirande, Juan Marcos. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentin
    corecore