- 1 Title:
- 2 Stable isotopic composition of fossil mammal teeth and environmental change in
- 3 southwestern South Africa during the Pliocene and Pleistocene
- 4

5 Authors:

- 6 Sophie B. Lehmann¹, David R. Braun², Kate J. Dennis³, David B. Patterson², Deano D.
- 7 Stynder⁴, Laura C. Bishop⁵, Frances Forrest⁶, Naomi E. Levin¹
- 8

9 Affiliations:

- ¹Johns Hopkins University, Department of Earth and Planetary Sciences, Olin Hall, 3400
- 11 N. Charles Street, Baltimore, MD, USA
- 12 <u>slehman4@jhu.edu</u>, <u>naomi.levin@jhu.edu</u>
- 13
- 14 ²Hominid Paleobiology Doctoral Program, Center for the Advanced Study of Human
- 15 Paleobiology, Department of Anthropology, 800 22nd Street NW, Washington DC,
- 16 20052, USA, <u>dbpatter@gwmail.gwu.edu</u>, <u>david.braun@uct.ac.za</u>
- 17
- ³Princeton University, Department of Geosciences, Guyot Hall, Princeton, NJ,
- 19 katejdennis@gmail.com
- 20
- ⁴University of Cape Town, Department of Archaeology, Rondebosch 7701, South Africa,
 Deano.Stynder@uct.ac.za
- 23
- ⁵Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural
- Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, United
 Kingdom, <u>l.c.bishop@ljmu.ac.uk</u>
- 27
- ⁶Department of Anthropology, City University of New York, and NYCEP, Flushing, NY,
- 29 USA, <u>francesforrest@gmail.com</u>

- 30 Key words:
- 31 Pliocene-Pleistocene climate, stable isotopes, tooth enamel, South Africa, C_4 vegetation 32
- **Draft date:** April 12th 2016
- 34 For submission to Palaeogeography, Palaeoclimatology, Palaeoecology
- 3536 Text word count: 9470 words without captions and 755 words in the captions
- 3738 Figure count: 5 in text
- 3940 Table count: 2 in text and 4 supplementary
- 4142 Reference count: 97
- 43
- 44 **Color of figures:** Black and white not required

45	Highlights:
46	Grazing herbivores in southwestern South Africa ate substantial amounts of C ₃ grasses
47	and minor amounts of C ₄ grasses
48	
49	Winter rainfall has persisted in southwestern South Africa since at least 5 Ma
50	
51	Elandsfontein was likely buffered from regional aridity during the mid-Pleistocene

52 Abstract

53 The past 5 million years mark a global change from the warmer, more stable 54 climate of the Pliocene to the initiation of glacial-interglacial cycles during the 55 Pleistocene. Marine core sediment records located off the coast of southwestern Africa 56 indicate aridification and intensified upwelling in the Benguela Current over the Pliocene 57 and Pleistocene. However, few terrestrial records document environmental change in 58 southwestern Africa over this time interval. Here we synthesize new and published 59 carbon and oxygen isotope data of the teeth from large mammals (>6 kg) at 60 Langebaanweg (\sim 5 million years ago, Ma), Elandsfontein (1.0 – 0.6 Ma), and Hoedjiespunt (0.35 - 0.20 Ma), to evaluate environmental change in southwestern Africa 61 62 between the Pliocene and Pleistocene. The majority of browsing and grazing herbivores from these sites yield enamel δ^{13} C values within the range expected for animals with a 63 pure C₃ diet, however some taxa have enamel δ^{13} C values that suggest the presence of 64 65 small amounts C₄ grasses at times during the Pleistocene. Considering that significant 66 amounts of C_4 grasses require a warm growing season, these results indicate that the 67 winter rainfall zone, characteristic of the region today, could have been in place for the past 5 million years. The average δ^{18} O value of the herbivore teeth increases ~4.4% 68 69 between Langebaanweg and Elandsfontein for all taxa except suids. This increase may 70 solely be a function of a change in hydrology between the fluvial system at 71 Langebaanweg and the spring-fed environments at Elandsfontein, or a combination of 72 factors that include depositional context, regional circulation and global climate. 73 However, an increase in regional aridity or global cooling between the early Pliocene and mid-Pleistocene cannot explain the entire increase in enamel δ^{18} O values. Spring-fed 74

round the environments like those at Elandsfontein may have provided critical resources for

76 mammalian fauna in the mid-Pleistocene within an increasingly arid southwestern Africa77 ecosystem.

78

79

80 Introduction

81 The Pliocene-Pleistocene climatic transition is marked by a global shift from 82 relatively warm and stable climate conditions in the Pliocene to colder and more variable 83 conditions in the Pleistocene (Imbrie et al., 1992; Zachos et al., 2001). Over the course of this transition African landscapes are considered to have become more arid (e.g., 84 85 deMenocal, 2004; Dupont et al., 2013). In southwestern Africa, intensified upwelling of 86 cold bottom waters in the Benguela Current System has been linked with increased regional aridity and the onset, expansion and speciation of the endemic Cape flora since 87 the Miocene (Marlow et al., 2000; Dupont et al., 2005; 2011; Etourneau et al., 2009). 88 89 While marine-based records indicate major changes in vegetation and climate in southern 90 Africa, terrestrial-based records could provide a more local perspective of the 91 hydrological setting, vegetation and climate of southwestern South Africa since the 92 Pliocene; currently there are few archives of environmental change in this region during 93 the last 5 million years (myr) (Roberts et al., 2011; Eze and Meadows, 2014). 94 Sedimentary strata from known Pliocene and Pleistocene fossil sites in 95 southwestern South Africa have the potential to provide direct evidence for the local 96 environmental response to climate change (Table 1). Sedimentary records indicate a 97 transition from fluvial to spring-fed and eolian deposition in southwestern South Africa

98 (Roberts et al., 2011; Eze and Meadows, 2014). Data from pre-Holocene mammalian 99 fossils suggest the presence of significant amounts of surface water and a vegetated 100 landscape composed of a fynbos shrubland and grassland mosaic, interspersed with trees 101 and broad-leafed bush, which contrasts the dry, eolian landscapes that are prevalent in 102 southwestern South Africa today (e.g., Luyt et al., 2000; Franz-Odendaal et al., 2002; 103 Stynder, 2009; 2011; Braun et al., 2013). 104 Here we use the carbon and oxygen isotopic composition of fossil herbivore tooth 105 enamel obtained from paleontological and archaeological sites in southwestern South 106 Africa to investigate trends in regional climate and hydrology, vegetation and animal diet 107 between the Pliocene and Pleistocene. Together with marine archives off the coast of 108 southern Africa that record broader, regional-scale climate and vegetation, we use these 109 terrestrial-based data to improve upon the understanding of how environments in 110 southwestern South Africa responded to global climatic changes during the Pliocene and 111 Pleistocene.

112

113

114 Background

115 2.1 South African climate and vegetation

South Africa is predominantly semiarid with three distinct rainfall zones and corresponding vegetation zones (Fig. 1; Cowling et al., 2002). The winter rainfall zone of western South Africa encompasses an area of ~200-km² where ~65% of mean annual precipitation (MAP) occurs between April and September. The summer rainfall zone is affected by the warm Agulhas Current that flows along the eastern coast of South Africa.

At the intersection of these two major meteorological zones, situated along the South
Coast of South Africa, there is a region that receives rainfall during both the summer and
winter. This annual rainfall zone spans from the southern coast of the Eastern Cape
Province of South Africa into the Western Cape Province (e.g., Chase and Meadows,
2007).

126 Rainfall zones in South Africa partition zones of vegetation, which can be seen 127 through the spatial distribution of the frequency of the three main photosynthetic 128 pathways: C₃, C₄, and Crassulacean Acid Metabolism (CAM). The distribution of these 129 pathways is largely determined by environmental factors (Farquhar et al., 1989). C₄ 130 plants thrive in environments with a warm growing season while C₃ plants grow primarily 131 in cool growing seasons. CAM plants, such as cacti and succulents, are often found in 132 semiarid to arid environments. The distribution of grass type is related to the seasonality 133 of rainfall in South Africa; C₄ grasses mostly grow in regions with summer rainfall, C₃ 134 grasses grow where there is winter rainfall, and both C_3 and C_4 grasses grow in the 135 annual rainfall zone (Vogel et al., 1978; Cowling et al., 2002; Bar-Matthews et al., 2010). 136 Increased upwelling and the latitudinal movement of the Benguela Current may modify 137 the movement of warm waters along the coast of South Africa and this could impact the 138 distribution of the rainfall zones (Chase and Meadows, 2007). The positions of the 139 rainfall and vegetation zones are hypothesized to have shifted during the late Quaternary 140 in response to the position and upwelling intensity of the Benguela Current (Lee-Thorp and Beaumont, 1995), however it is unclear whether they were stable in the Pliocene and 141 142 mid-Pleistocene.

143 The paleontological and archaeological sites that are the focus of this paper are 144 within southwestern South Africa, west of the Cape Fold Mountains and stretch across 40 145 kms of the coastal plain. These sites, Langebaanweg (~5 million years ago (Ma), early 146 Pliocene), Elandsfontein (1.0 - 0.6 Ma, mid-Pleistocene) and Hoedjiespunt (0.35 - 0.20 ms)147 Ma, late Pleistocene), are within the winter rainfall zone (Fig. 1). Regionally the area is 148 known as Strandveld (literally 'beach vegetation') and geomorphologically is dominated 149 by a coastal plain variably covered by marine sands (Mabbutt, 1955; Roberts et al., 2012). 150 Limited outcrops of granite to the south and west interrupt Cenozoic-aged eolian deposits 151 that blanket much of the region. The western portion of the area is underlain by shales of 152 the Malmesbury Group leading up to the Paloezoic sandstones of the Cape Supergroup 153 (Besaans, 1972; Roberts et al., 2009). The contemporary vegetation in the study area is 154 primarily composed of small-leafed, nutrient-poor taxa of the strandveld and fynbos 155 families. C₃ grasses and trees are scarce in this area because of the nutrient-poor soils. It 156 has generally been presumed that C₄ grasses are limited in the southwestern Cape by the 157 long, hot and dry summers, however C₄ grasses are able to grow in areas that are well 158 watered throughout the year (e.g., Cowling et al., 2002; 2005).

159

160 2.2 Pliocene and Pleistocene climate and vegetation in western South Africa

161 *2.2.1 Marine records*

Marine sediment records from cores off the coast of southwestern Africa span the past 4.5 myr and provide information about terrestrial responses to global climate change and the degree of ocean upwelling (Marlow et al., 2000; Dupont, 2005; Etourneau et al., 2009). Charcoal and plant waxes preserved offshore show that there was an increase in

166 aridity, seasonality and fires to the north of the study area during the Miocene and 167 Pliocene (Hoetzel et al., 2013). The drying trend continued across the 168 Pliocene-Pleistocene climatic transition; offshore pollen records indicate a reduction in 169 grass and an increased occurrence of fynbos and semi-desert vegetation (e.g., Dupont et 170 al., 2005). 171 172 2.2.2 Terrestrial records 173 In contrast to the high-resolution, marine-based proxy records that extend into the 174 Miocene, there are no terrestrial-based proxy records with a similar time span or 175 resolution. However the numerous archives of eolian and riverine sedimentary sequences 176 on the coastal plains of southwestern South Africa provide some details of late Cenozoic 177 environments. There have been numerous studies of ancient environments in this region 178 based on these records (e.g., Klein, 1978; 1982; 1983; 1991; Klein and Cruz-Uribe, 1991; 179 February, 1992; Meadows et al., 1996). However, the vast majority of these studies have 180 focused on environments since the Last Interglacial (0.125 Ma). Langebaanweg, 181 Elandsfontein and Hoedjiespunt are paleontological and archeological sites within the 182 study area that date to within the last \sim 5 myr. These sites are well known for their 183 contribution to our understanding of faunal change and human evolution in South Africa 184 (e.g., Hendey, 1976; Klein, 1978; Berger and Parkington, 1995; Stynder, 1997; Stynder et 185 al., 2001; Klein et al., 2007; Braun et al., 2013). The flora, fauna and sediment records at 186 these sites provide a record of environmental change in the area from the Pliocene and 187 Pleistocene (Luyt et al., 2000; Franz-Odendaal et al., 2002; Stynder, 2009; Roberts et al., 188 2011; Stynder, 2011; Braun et al., 2013; Hare and Sealy, 2013; Eze and Meadows, 2014).

190 currently there is no detailed, integrated record of the hydrological, ecological and 191 climatic changes in southwestern South Africa over the past 5 myr. 192 193 2.3 Carbon and oxygen isotope composition of herbivore tooth enamel 194 C_3 , C_4 and CAM plants have distinct stable carbon isotope values primarily due to 195 different physiologies of the different photosynthetic pathways (e.g., Farquhar et al., 1989). Carbon isotope data of plants are traditionally presented using δ -notation, where 196 $\delta = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1\right) * 1000 \text{ in per mil (\%) units and } R_{\text{sample}} \text{ and } R_{\text{standard}} \text{ are the ratios of heavy}$ 197 to light isotopes (in this case, ${}^{13}C$ and ${}^{12}C$) of the sample and standard, respectively. $\delta^{13}C$ 198 values are reported relative to Vienna Pee Dee Belemnite (VPDB). The δ^{13} C values of C₃ 199 plants globally range from ~-31.7% to ~-23.1% (Kohn et al., 2010). The δ^{13} C values C₄ 200 201 plants range from ~-14.0% and ~-10.0% (Hattersley, 1982). In southwestern South Africa the average δ^{13} C value of C₄ plants is -12.8±1.3‰ (Radloff, 2008), whereas δ^{13} C 202 values of CAM plants range from ~-24‰ to ~-16‰ (Boom et al., 2014). 203 The $\delta^{13}C_{enamel}$ value reflects the proportion of C₃ and C₄ plants in an animal's diet 204 such that the $\delta^{13}C_{enamel}$ values of fossil herbivore teeth can be used to determine the 205 206 presence or absence of C_3 and C_4 grasses in the past. There is a +14.1% dietary enrichment of δ^{13} C values between the diet of large herbivorous mammals (> 6 kg) and 207 their enamel (Cerling et al., 1999) and as such the δ^{13} C value of tooth enamel (δ^{13} C_{enamel}) 208 reflects the isotopic composition of an animal's diet (see Kohn and Cerling, 2002 for 209 210 review). Here we define large mammals as > 6 kg because the smallest mammal included

While these sites have been the focus of a variety of paleoecological studies (Table 1),

189

211	in this category is the grysbok, which is ~ 10 kg, whereas we refer to the mammals from
212	Elandsfontein with body weights < 6 kg as small mammals, which includes the rodent
213	genera Bathyergus and Otomys. For fossil sites, in southern Africa, the presence or
214	absence of C_3 and C_4 grasses in mammalian diet has been presumed to reflect the
215	presence or absence of winter and summer rainfall (Luyt et al., 2000; Franz-Odendaal et
216	al., 2002; Hare and Sealy, 2013). Within a C ₃ -dominated ecosystem, the isotopic
217	composition of tooth enamel from large herbivores can be used to tease apart subtleties in
218	the distribution of vegetation (e.g., Luyt et al., 2000; Franz-Odendaal et al., 2002; Hare
219	and Sealy, 2013). For example, Hare and Sealy (2013) suggest that there was some C_4
220	grass in C ₃ -dominated grasslands in southwestern South Africa during the late
221	Pleistocene because the $\delta^{13}C_{enamel}$ values of grazers were more enriched in $\delta^{13}C_{enamel}$
222	values than what is expected for a grazer consuming purely C ₃ vegetation. CAM plants
223	are not considered to have greatly influenced the $\delta^{13}C_{enamel}$ values because they do not
224	comprise a major proportion of large mammalian herbivore diets (Cerling et al., 2003)
225	and therefore they will not be further considered in this study.

The stable oxygen isotope composition of the carbonate component of herbivore 226 tooth enamel is affected by a number of factors including the δ^{18} O value of ingested 227 water, which is influenced by the δ^{18} O values of precipitation, surface and plant water, as 228 well as animal physiology and behavior (as reviewed in Kohn and Cerling, 2002). All of 229 these factors generally contribute to higher δ^{18} O values of enamel in more arid 230 environments. The comparison of enamel δ^{18} O values between obligate drinkers and non-231 obligate drinkers has been specifically used for evaluating relative aridity in terrestrial 232 233 ecosystems (e.g., Levin et al., 2006).

234	The oxygen isotopic composition of enamel phosphate has also been used as a
235	proxy for paleoclimate and is considered to be less susceptible to alteration than the
236	oxygen isotope composition of the carbonate component of enamel because oxygen in the
237	phosphate component is more tightly bound than in the carbonate component of enamel
238	(Chenery et al., 2012). The offset between δ^{18} O values of the carbonate and phosphate
239	components of enamel ranges from 7.2% to 10.6% in well-preserved teeth and has been
240	used as a means to evaluate diagenetic modification of the δ^{18} O values of fossil teeth
241	(e.g., Iacumin et al., 1996).
242	
243	
244	3. Materials and Methods
245	3.1 Fossil enamel samples
246	We sampled mid-Pleistocene fossil teeth from two separate faunal collections at
247	Elandsfontein. The first collection is housed at the Iziko South African Museums in Cape
248	Town, South Africa. This faunal sample, known as Elandsfontein Main (EFTM), was
249	predominantly collected from surface deposits over the course of several decades as
250	described in Klein et al. (2007). The second collection derives from recent fieldwork
251	conducted by the West Coast Research Project (WCRP) between 2008 and 2014. These
252	materials are archived at the Archaeology Department, University of Cape Town and
253	include both surface samples and excavated teeth. All fossils that we sampled from the
254	WCRP collection derive from the Upper Pedogenic Sand lithological unit that is part of
255	the Langebaan Formation (Braun et al., 2013). We also sampled Pliocene teeth ($n = 10$)
256	from the Varswater Formation at the Langebaanweg paleontological locality, which were

257 obtained from the West Coast Fossil Park (Roberts et al., 2011). The teeth from 258 Langebaanweg were sampled to provide a point of comparison in the evaluation of the 259 diagenetic alteration of oxygen isotopes in tooth enamel from Elandsfontein. All tooth 260 enamel was sampled with a diamond drill bit along the tooth growth axis. When possible, 261 third molars were sampled. New data were compiled with previously published carbon 262 and oxygen isotope tooth enamel data from the region, including 64 teeth from 263 Langebaanweg (Franz-Odendaal et al., 2002), 18 teeth from Elandsfontein (Luyt et al., 264 2000), and 39 teeth from Hoedjiespunt (Hare and Sealy, 2013). This compilation does not 265 include the isotope data of the fossil teeth from the "Bone Circle" at Elandsfontein that 266 Luyt et al. (2000) published because we are uncertain of their context and relationship to 267 the other fossils from Elandsfontein (Braun et al., 2013). 268

269 3.2 Isotopic measurements

We measured $\delta^{13}C_{enamel}$ values and $\delta^{18}O$ values of both the carbonate and phosphate components of fossil tooth enamel. We also measured $\delta^{18}O$ and $\delta^{2}H$ values of surface and ground waters in the immediate vicinity of Elandsfontein and in the general Langebaan-Hopefield region.

274

275 *3.2.1 Analysis of the enamel carbonate component*

Fossil enamel was powdered, treated with 3% H₂O₂ to remove organic material and rinsed three times with deionized water. The resultant powder was rinsed with 0.1 *M* buffered acetic acid to remove secondary carbonate, rinsed three times with deionized water and dried overnight at 60°C. Approximately 500 to 800 µg of each powdered

280	sample were placed in a silver capsule then digested under vacuum in a common bath of
281	100% phosphoric acid at 90°C and the resultant CO ₂ was purified using a custom-built
282	automated device (Passey et al., 2010). The CO_2 was analyzed for ${}^{13}C/{}^{12}C$ and ${}^{18}O/{}^{16}O$
283	ratios using a dual inlet system on a Thermo MAT253 isotope ratio mass spectrometer in
284	the Department of Earth and Planetary Sciences, Johns Hopkins University. The isotopic
285	composition of the resultant CO_2 was determined with respect to a working CO_2
286	reference, calibrated using NBS-19, and monitored using working references of calcite
287	and enamel. The precision of the working carbonate enamel standards over the course of
288	the analyses made for this study was 0.4‰ and 0.2‰ for $\delta^{13}C$ and $\delta^{18}O$, respectively. An
289	acid fractionation factor of 1.00725 was used for determining δ^{18} O values of the
290	carbonate component of fossil enamel digested at 90°C (Passey et al., 2007). All $\delta^{13}C$
291	values are reported relative to VPDB (Vienna Pee Dee Belemnite) and $\delta^{18}O$ values are
292	reported relative to VSMOW (Vienna Standard Mean Ocean Water).
293	
294	3.2.2 Analysis of the $\delta^{18}O$ values of enamel phosphate
295	Forty-eight fossil teeth from Langebaanweg and Elandsfontein were analyzed for
296	the δ^{18} O values of enamel phosphate, in addition to carbon and oxygen isotope analyses

297 of enamel carbonate mentioned above. Samples were drilled and pretreated in the manner

described above (Section 3.2.1). Phosphate-bound oxygen was isolated and extracted

from enamel using a modified version of the batch Ag₃PO₄ precipitation method of

300 O'Neil et al. (1994) followed by δ^{18} O analysis of approximately 400 µg of Ag₃PO₄ via

301 high temperature pyrolysis to CO (TC/EA) on a continuous flow Delta Plus XL isotope

302 ratio mass spectrometer at the Department of Geosciences, Princeton University.

303	Long-term performance (precision of the isotope ratio mass spectroscopy
304	measurement and wet chemistry conversion from hydroxyapatite to Ag ₃ PO ₄) was
305	confirmed by repeat analysis of NBS120c, a phosphate rock with certified metal oxide
306	abundances and distributed by the National Institute of Standards and Technology and the
307	<i>de facto</i> standard for δ^{18} O in phosphate, with δ^{18} O values ranging from 21.3 to 22.6‰
308	VSMOW (e.g., Vennemann et al., 2002; Halas et al., 2011). Although precipitation yield
309	varied using the modified O'Neil et al. (1994) batch precipitation method (52±22 %),
310	repeat analysis of the NBS120c phosphate standard over 18 months averaged
311	22.36±0.48‰ and showed no dependence of measured δ^{18} O values on precipitation yield,
312	with the average value aligning well with published δ^{18} O values.
313	
314	3.2.3 Analysis of the $\delta^{18}O$ values of water
315	Samples of standing water and ground water ($n = 3$) were collected from a series
316	of active springs in the vicinity (within a \sim 3 km to \sim 17 km radius) of the Quaternary
317	deposits at Elandsfontein where fossil teeth were collected. Tap water from The Western
318	Cape Fossil Park (which is in the general proximity of the study area) was also collected
319	($n = 1$). Samples were passed through a 0.45-µm filter in the field and sealed in a glass
320	bottles with polycone seal lids and wrapped in parafilm to prevent evaporation. Samples
321	were cleaned with activated charcoal to remove organics, filtered again and then analyzed
322	by laser absorption spectroscopy on a Los Gatos Research Liquid-Water Isotope
323	Analyzer at the Department of Earth and Planetary Sciences, Johns Hopkins University.
324	The precision of the working water standard USGS48 over the course of the water
325	analyses was 0.03‰ and 0.1‰ for $\delta^{18}O$ and δ^2H respectively. The $\delta^{18}O$ and δ^2H values of

water samples are reported relative to the VSMOW-SLAP scale, where SLAP is StandardLight Antarctic Precipitation.

- 328
- 329

330

3.3 Interpretation of stable isotope results

3.3.1 Influence of $\delta^{13}C$ values of atmospheric CO_2

The δ^{13} C value of atmospheric CO₂ has decreased over the past 5 myr (Tipple et 331 al., 2010) and this decrease needs to be considered when using $\delta^{13}C_{enamel}$ values to 332 333 determine the proportion of C₃ and C₄ plants in an animal's diet. The δ^{13} C value of atmospheric CO₂ will influence the δ^{13} C values of C₃ and C₄ plants and as a consequence 334 will influence $\delta^{13}C_{enamel}$ values of the tissues of the animals that eat these plants. We 335 calculated the ranges in δ^{13} C values that we expect for C₃ and C₄ plants at the time 336 337 periods representative of Langebaanweg (~ 5 Ma), Elandsfontein (1.0 – 0.6 Ma) and Hoedjiespunt (0.35 – 0.20 Ma) to better determine what herbivore $\delta^{13}C_{enamel}$ values may 338 indicate about the distribution of C₃ and C₄ plants in the study area, considering the δ^{13} C 339 340 values of atmospheric CO₂ reconstructed from benthic foraminifera (Tipple et al., 2010; see Table S1 for details). Given changes in the δ^{13} C value of atmospheric CO₂, the 341 maximum $\delta^{13}C_{enamel}$ values for large mammals with a pure C₃ diet are -7.6% for 342 343 Langebaanweg and -8.4‰ for both Elandsfontein and Hoedjiespunt (Table S1). If the $\delta^{13}C_{enamel}$ value of a grazer is higher than the reconstructed maximum $\delta^{13}C_{enamel}$ value for 344 345 an animal eating a pure C_3 diet, then it implies the presence of C_4 grass in the animal's 346 diet and, in turn, the growth of C₄ plants in the otherwise dry summer months in 347 southwestern South Africa. As mentioned earlier, the presence of C₄ grass in 348 southwestern South Africa is interpreted as the inclusion of rainfall during the summer

349 months in this ecosystem. Alternatively, large mammals may be feeding around

350 permanent water sources such as springs and rivers where C₄ plants may have grown.

351

352

3.3.2 Analysis of the $\delta^{18}O$ values of enamel phosphate

353 Low carbonate content of fossils, bones and sediments at Elandsfontein have led 354 to hypotheses that carbonate has been leached from the fossil deposits at the 355 Elandsfontein archeological site since initial deposition and burial (Luyt et al., 2000). 356 This is in contrast to fossils from the sites Langebaanweg and Hoedjiespunt, which have 357 been recovered from carbonate-rich sediments (Stynder, 1997; Roberts et al., 2013). To evaluate the potential influence of leaching on the δ^{18} O values of the carbonate 358 component of tooth enamel at Elandsfontein and whether or not these δ^{18} O values can be 359 used as indicators of paleoclimate, we compared the offsets in δ^{18} O values of the 360 361 carbonate and phosphate of fossil teeth from Elandsfontein to those from Langebaanweg. 362 Oxygen in enamel phosphate is more strongly bound and more resistant to 363 diagenetic alteration than in enamel carbonate. There is a consistent enrichment between the δ^{18} O value in enamel phosphate and carbonate and as such δ^{18} O values of the oxygen 364 365 in the phosphate and carbonate component of tooth enamel are strongly correlated for 366 modern and unaltered fossil enamel (Bryant et al., 1996; Iacumin et al., 1996; Martin et 367 al., 2008). This enrichment, or epsilon

368 (i.e.,
$$\varepsilon \delta^{18} O_{A-B}$$
 where $\varepsilon \delta^{18} O_{A-B} = \left[\frac{1000 + \delta^{18} O_A}{1000 + \delta^{18} O_B} \right] x$ 1000 and where in this case $A = CO_3$

and $B = PO_4$), ranges from 7.2 to 10.6‰ for enamel that has not experienced significant diagenesis (Bryant et al., 1996; Iacumin et al., 1996; Martin et al., 2008). The

371 $\varepsilon \delta^{18}O_{CO3-PO4}$ has been used to determine if the oxygen isotopic composition of the

372	carbonate in bioapatite has been diagenetically altered (Iacumin et al., 1996). We
373	compared $\epsilon \delta^{18}O_{CO3-PO4}$ values of teeth at Elandsfontein to those from Langebaanweg and
374	from compilations of modern teeth to evaluate the integrity of the $\delta^{18}O$ values of the
375	carbonate component of teeth from Elandsfontein. If the $\varepsilon \delta^{18}O_{CO3-PO4}$ values at
376	Langebaanweg and Elandsfontein are similar to one another and within the range
377	expected for unaltered teeth, then the δ^{18} O values of the carbonate component of enamel
378	from Elandsfontein can be used to reconstruct paleoenvironment.
379	
380	3.3.3 Statistical comparison of isotopic values
381	All comparisons of isotope data from fossil teeth were performed using the JMP
382	11, a statistical analytical software program developed by the SAS Institute and evaluated
383	using the Tukey-Kramer HSD test. The \pm symbol is used throughout this paper to
384	represent one standard deviation from the mean.
385	
386	
387	4. Results
388	4.1 Isotopic composition of fossil enamel carbonate from Elandsfontein
389	The compiled dataset for carbon and oxygen isotope data (carbonate component
390	only) for large mammalian teeth from Elandsfontein is comprised of two collections that
391	represent the mid-Pleistocene, EFTM ($n = 71$; Luyt et al., 2000; this study) and WCRP
392	($n = 123$; this study). The EFTM and WCRP collections include fossil teeth from seven
393	herbivore families: Bovidae, Elephantidae, Equidae, Giraffidae, Hippopotamidae,
394	Rhinocerotidae and Suidae, in addition to a single tooth from the primate family,

Cercopithecidae (see Table 2 and Table S2). These samples likely all belong to the same
stratigraphic unit, the mid-Pleistocene Upper Pedogenic Sand in the Langebaan
Formation (Braun et al., 2013). The main difference between these collections is that
fossils in the EFTM collection were collected from surface finds over decades (Klein et
al., 2007), whereas the WCRP collection includes a combination of fossils recovered
from surface surveys and excavations made with careful attention to stratigraphic context
(Braun et al., 2013).

403 (p > 0.2) of enamel carbonate, grouped by taxonomic family, from the EFTM collection 404 data reported by Luyt et al. (2000) and the new EFTM data that we report in this study. 405 When the isotopic data from teeth in the combined EFTM dataset (Luyt et al., 2000; this 406 study) are compared to the isotopic data from fossils in the WCRP collection (this study 407 only), we do not find any differences in δ^{13} C and δ^{18} O values of fossil teeth from like

There are no differences in either the δ^{13} C values (p > 0.9) or δ^{18} O values

408 families except for δ^{18} O values (enamel carbonate) of the suids (EFTM, n = 5,

402

409 26.3 \pm 2.6‰; WCRP, n = 3, 32.1 \pm 0.6‰, p = 0.004). We note that the sample size is small

410 for several of the families analyzed at Elandsfontein (see Table 2 and Table S2). From

411 here on out, we discuss the isotope data from both the EFTM and WCRP collections

412 together and refer to them as all from Elandsfontein, unless otherwise noted.

We classified the dietary behavior (i.e., grazer, browser or mixed feeder) of 104 teeth from the compiled collections for Elandsfontein using a combination of approaches, including mesowear, microwear and taxonomic analogy (Fig. 2; Table S2; Stynder, 2009; 2011). The individual teeth fall into three groups: browsers (n = 20), mixed feeders (n =417 4) and grazers (n = 71). *Theropithecus* at Elandsfontein has not yet been analyzed using

418	mesowear or microwear to determine diet so we do not place it in one of these categories.
419	We consider hippopotamids apart from the other taxa that we sampled and classify it as
420	semi-aquatic because in modern African ecosystems Hippopotamus amphibious spends a
421	significant amount of time immersed in water, unlike the other taxa in this dataset (e.g.,
422	Bocherens et al., 1996; Cerling et al., 2008). The $\delta^{13}C_{enamel}$ values of browsers, mixed
423	feeders and grazers average -11.6±0.8‰ ($n = 20$), -10.3±1.1‰ ($n = 4$) and -10.1±1.0‰ ($n = 4$)
424	= 71), respectively. The average $\delta^{13}C_{enamel}$ value of hippopotamids from Elandsfontein
425	is -12.3±1.1‰ ($n = 9$). The δ^{18} O values of the carbonate component of enamel of
426	browsers, mixed feeders, grazers and hippopotamids are 33.1±1.9‰, 31.3±1.6‰,
427	32.4 \pm 2.5‰ and 29.7 \pm 1.5‰, respectively. Hippopotamid δ^{18} O values of enamel carbonate
428	are significantly lower than δ^{18} O values of browsers ($p = 0.002$) and grazers ($p = 0.005$).
429	
430	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamel
430 431	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamel phosphate
430 431 432	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamelphosphateWe analyzed the oxygen isotope composition of both the carbonate and phosphate
430 431 432 433	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamel phosphate We analyzed the oxygen isotope composition of both the carbonate and phosphate components of a subset of tooth enamel from Elandsfontein and Langebaanweg to
430 431 432 433 434	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamelphosphateWe analyzed the oxygen isotope composition of both the carbonate and phosphatecomponents of a subset of tooth enamel from Elandsfontein and Langebaanweg toevaluate whether the δ^{18} O value of the carbonate component of enamel from fossil teeth
430 431 432 433 434 435	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamel phosphate We analyzed the oxygen isotope composition of both the carbonate and phosphate components of a subset of tooth enamel from Elandsfontein and Langebaanweg to evaluate whether the δ^{18} O value of the carbonate component of enamel from fossil teeth at Elandsfontein is well enough preserved that it can be used as a proxy for conditions
430 431 432 433 434 435 436	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamel phosphate We analyzed the oxygen isotope composition of both the carbonate and phosphate components of a subset of tooth enamel from Elandsfontein and Langebaanweg to evaluate whether the δ^{18} O value of the carbonate component of enamel from fossil teeth at Elandsfontein is well enough preserved that it can be used as a proxy for conditions during the animal's life. The average $\varepsilon \delta^{18}$ O _{CO3-PO4} values of enamel are 9.2±0.7‰
430 431 432 433 434 435 436 437	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamel phosphate We analyzed the oxygen isotope composition of both the carbonate and phosphate components of a subset of tooth enamel from Elandsfontein and Langebaanweg to evaluate whether the δ^{18} O value of the carbonate component of enamel from fossil teeth at Elandsfontein is well enough preserved that it can be used as a proxy for conditions during the animal's life. The average $\epsilon \delta^{18}$ O _{CO3-PO4} values of enamel are 9.2±0.7‰ ($n = 38$) and 8.2±0.7‰ ($n = 10$) for Elandsfontein and Langebaanweg, respectively; these
430 431 432 433 434 435 436 437 438	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamel phosphate We analyzed the oxygen isotope composition of both the carbonate and phosphate components of a subset of tooth enamel from Elandsfontein and Langebaanweg to evaluate whether the δ^{18} O value of the carbonate component of enamel from fossil teeth at Elandsfontein is well enough preserved that it can be used as a proxy for conditions during the animal's life. The average $\varepsilon \delta^{18}O_{CO3-PO4}$ values of enamel are 9.2±0.7‰ ($n = 38$) and 8.2±0.7‰ ($n = 10$) for Elandsfontein and Langebaanweg, respectively; these values fit within the range observed for well-preserved teeth (7.2 – 10.6‰) (Bryant et al.,
430 431 432 433 434 435 436 437 438 439	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamel phosphate We analyzed the oxygen isotope composition of both the carbonate and phosphate components of a subset of tooth enamel from Elandsfontein and Langebaanweg to evaluate whether the δ^{18} O value of the carbonate component of enamel from fossil teeth at Elandsfontein is well enough preserved that it can be used as a proxy for conditions during the animal's life. The average $\epsilon \delta^{18}O_{CO3-PO4}$ values of enamel are 9.2±0.7‰ ($n = 38$) and 8.2±0.7‰ ($n = 10$) for Elandsfontein and Langebaanweg, respectively; these values fit within the range observed for well-preserved teeth (7.2 – 10.6‰) (Bryant et al., 1996; Iacumin et al., 1996 and Martin et al., 2008; Fig. 3; Table S3). Based on the
430 431 432 433 434 435 436 437 438 439 440	4.2 Comparison of oxygen isotopic values between enamel carbonate and enamel phosphate We analyzed the oxygen isotope composition of both the carbonate and phosphate components of a subset of tooth enamel from Elandsfontein and Langebaanweg to evaluate whether the δ^{18} O value of the carbonate component of enamel from fossil teeth at Elandsfontein is well enough preserved that it can be used as a proxy for conditions during the animal's life. The average $\epsilon \delta^{18}O_{CO3-PO4}$ values of enamel are $9.2\pm0.7\%_0$ ($n = 38$) and $8.2\pm0.7\%_0$ ($n = 10$) for Elandsfontein and Langebaanweg, respectively; these values fit within the range observed for well-preserved teeth ($7.2 - 10.6\%_0$) (Bryant et al., 1996; Iacumin et al., 1996 and Martin et al., 2008; Fig. 3; Table S3). Based on the similarities in these offsets to what has been measured in well-preserved enamel, we

441 consider the δ^{18} O values of the carbonate component of tooth enamel from Elandsfontein 442 to be unaltered and to reflect the environmental and physiological conditions experienced 443 by an animal during tooth formation.

444 Further data to support this conclusion comes from interspecific comparisons of δ^{18} O values of enamel carbonate. Numerous fossil and modern localities have 445 documented that δ^{18} O values of hippopotamid enamel carbonate are lower than the δ^{18} O 446 447 values of coeval taxa because they would be eating plants close to water and drinking 448 water (e.g., Bocherens et al., 1996; Levin et al., 2006). Similar taxonomic distinctions 449 found between ancient taxa in the Elandsfontein collection indicate that the unaltered 450 biogenic signal of isotopic values is preserved in these specimens (Fig. 2b). Henceforth, we only discuss the δ^{18} O values from the carbonate component of tooth enamel and refer 451 to them as $\delta^{18}O_{enamel}$ values. 452

453

454 4.3 Trends in $\delta^{13}C_{enamel}$ and $\delta^{18}O_{enamel}$ values from southwestern South Africa since 5 455 Ma

We compiled the new carbon and oxygen isotope data from tooth enamel produced in this study from Elandsfontein and Langebaanweg with the published data from Langebaanweg (Franz-Odendaal et al., 2002), Elandsfontein (Luyt et al., 2000) and Hoedjiespunt (Hare and Sealy, 2013) to examine environmental and climatic changes in southwestern South Africa over the past ~5 myr. We used mesowear, microwear and taxonomic analogy to classify the dietary behavior of taxa for samples from Langebaanweg and Elandsfontein (Sponheimer et al., 2001; Franz-Odendaal et al., 2004;

463	Stynder, 2009; 2011). Dietary behaviors of Hoedjiespunt bovids are discussed in Hare
464	and Sealy (2013). These data are compiled in Table S2.
465	The δ^{13} C _{enamel} values of fossil teeth average -11.3±1.3‰ (<i>n</i> = 74) at
466	Langebaanweg, -10.6±1.3‰ ($n = 194$) at Elandsfontein and -9.5±1.5‰ ($n = 39$) at
467	Hoedjiespunt. The average $\delta^{13}C_{enamel}$ value of large mammals (> 6 kg) at each site fall
468	within the range of the $\delta^{13}C_{enamel}$ values expected for animals with diets comprised of
469	purely C ₃ vegetation (Fig. 4).
470	Comparisons of $\delta^{18}O_{enamel}$ values from each family from Langebaanweg and
471	Elandsfontein indicate significant differences for like taxa ($p < 0.001$), where the
472	$\delta^{18}O_{enamel}$ values for teeth from Elandsfontein are typically ~4.5‰ more positive than
473	those from Langebaanweg (Table 2; Table S2, Fig. 4b). This distinction holds for
474	$\delta^{18}O_{enamel}$ values of all taxa sampled from the two sites except for suids for which there is
475	no difference in $\delta^{18}O_{enamel}$ values for Elandsfontein (28.0±3.1‰) and Langebaanweg
476	(27.7±0.9‰) (Fig. 4b). However, we do observe a ~4.4‰ increase in suid $\delta^{18}O_{enamel}$
477	values between Langebaanweg and Elandsfontein when we only consider the suid
478	δ^{18} O _{enamel} values from the WCRP collection at Elandsfontein (32.1±0.6‰, <i>n</i> =3) and
479	exclude the suid $\delta^{18}O_{enamel}$ values from EFTM from Luyt et al. (2000). The Hoedjiespunt
480	enamel samples are limited to bovids and the comparison of $\delta^{18}O_{enamel}$ values for fossil
481	bovids from the three fossil sites are distinct from one another ($p < 0.001$). Bovid
482	$\delta^{18}O_{enamel}$ values average 28.7±2.8‰ at Langebaanweg, 33.2±2.0‰ at Elandsfontein, and
483	31.4±1.5‰ at Hoedjiespunt.
484	

486 **5. Discussion**

487 5.1 Vegetation trends in southwestern South Africa

488 Mammalian faunal and offshore pollen records indicate that the ecosystem of 489 southwestern South Africa was different in the Pliocene and Pleistocene from today and 490 that C_3 grasses were an important component of the physiognomic structure of these 491 ecosystems at times during the last 5 myr (e.g., Dupont et al., 2005; Faith, 2011; Hare and 492 Sealy, 2013). Today the vegetation community is composed of mostly woody, fynbos 493 shrubs. Although rare in southwestern South Africa, grasses are more common inland 494 where they grow on shale substrate, than they are on the marine sands typically found in 495 the study area (Cowling, 1992). The $\delta^{13}C_{enamel}$ values of large mammals from Langebaanweg, Elandsfontein and 496

497 Hoedjiespunt show that herbivores had diets composed largely of C₃ vegetation (Luyt et 498 al., 2000; Franz-Odendaal et al., 2002; Hare and Sealy, 2013; this study). Specifically, the 499 $\delta^{13}C_{enamel}$ values of grazers indicate that the majority of the grasses consumed were C₃ 500 grasses. Although the presence of C₄ vegetation cannot be totally discounted at 501 Elandsfontein and Hoedjiespunt (Luyt et al., 2000; Hare and Sealy, 2013; Patterson et al., *in revision*), the δ^{13} C_{enamel} data presented here indicate that it was a relatively small 502 503 component of the diets of large herbivores (Fig. 4). 504 The bovids at Elandsfontein are diverse and have a range of dietary behaviors

such that the variation in the isotopic composition of bovid teeth may be used to develop a more detailed understanding of the nature of vegetation in the C_3 -dominated ecosystem

507 of southwestern South Africa. For this reason, we compared the $\delta^{13}C_{enamel}$ and $\delta^{18}O_{enamel}$

values among different bovid tribes, classifying them as browsers, grazers or mixedfeeders (see Table 2 and Fig. 4).

When split by tribe there are no distinctions among the $\delta^{13}C_{enamel}$ values of bovids 510 from the other grazing and browsing taxa at Langebaanweg (p > 0.8). The $\delta^{13}C_{enamel}$ 511 512 values of all fossil teeth at Langebaanweg (browsers, grazers and mixed feeders) are > 2% more negative than the cutoff value for animals with a diet that includes any C₄ 513 514 vegetation (-7.6‰, refer to Section 3.3.1), indicating that all of the animals we sampled had diets composed of solely C₃ vegetation. At Elandsfontein, the $\delta^{13}C_{enamel}$ values of 515 516 browsing taxa (Tragelaphini, Neotragini and giraffid) are significantly more negative 517 than those of grazing taxa (Alcelaphini, Bovini, Reduncini and equid) (p = 0.005). In comparison, at Hoedjiespunt the $\delta^{13}C_{enamel}$ values of browsing and grazing bovids are not 518 statistically different from one another (p = 0.97). In addition, we find that $\delta^{13}C_{enamel}$ 519 520 values of browsing bovid tribes at Hoedjiespunt are ~4‰ more positive than those of the browsers at Elandsfontein (Fig. 4), whereas the $\delta^{13}C_{enamel}$ values of grazing bovids at 521 522 Elandsfontein and Hoedjiespunt are not significantly different from one another in (p = 0.2). This might indicate that the browse vegetation at Elandsfontein was different 523 524 from that at Hoedjiespunt, which could be related to a drier or less dense mosaic 525 landscape (Kohn, 2010) at Hoedjiespunt compared with Elandsfontein. There are no clear trends that distinguish the $\delta^{18}O_{enamel}$ values among different bovid tribes at either 526 527 Elandsfontein or Hoedjiespunt. There are some indications of C₄ vegetation in the diets of 528 both browsers and grazers at Hoedjiespunt and of grazers at Elandsfontein, however there 529 are no indications of C₄ in the diet among browsers at Elandsfontein and any of the herbivores at Langebaanweg. There are no distinctions in $\delta^{13}C_{enamel}$ or $\delta^{18}O_{enamel}$ values 530

among the bovids that were sampled and identified to tribe (Acelaphini and Reduncini) at Langebaanweg (p = 1.0).

533	The $\delta^{13}C_{enamel}$ values of grazers at Elandsfontein and Hoedjiespunt that are more
534	positive than what is expected for a pure C_3 diet (-8.4‰, refer to Section 3.3.1) could
535	indicate the presence of some C4 grasses, either in some seasons or on specific points on
536	the landscape, like well-watered areas such as springs which is consistent with results
537	from Patterson et al. (in revision). Hare and Sealy (2013) also suggest that the presence of
538	some C ₄ vegetation in the diets of grazing bovids from Hoedjiespunt might reflect the
539	ability for C ₄ plants to grow within a winter rainfall zone during low <i>p</i> CO ₂ conditions
540	that are characteristic of glacial intervals. Although low pCO_2 conditions might account
541	for the presence of some C ₄ vegetation in the diets of grazers at Elandsfontein, the dating
542	of the deposits at Elandsfontein precludes us from assigning it to either a glacial or
543	interglacial period (Braun et al., 2013).
544	The survival of large herbivores in southwestern South Africa would have
545	required access to resources throughout the year. It is possible that there was an extended
546	rainy season and that abundant food resources grew on nutrient-rich calcareous soils,
547	which are no longer present at the fossil sites (Luyt et al., 2000). A year-round supply of
548	palatable browse and graze would have required sufficient surface water and at
549	Elansfontein, this likely included springs (Braun et al., 2013).
550	
551	5.2 Oxygen isotope record
552	The ~4.5‰ increase in $\delta^{18}O_{enamel}$ values between the Langebaanweg and

Elandsfontein fossil localities (from ~ 5 to 1.0 - 0.6 Ma) occurs across a time of global

554	cooling and aridification (Marlow et al., 2000; Etourneau et al., 2009). $\delta^{18}O_{enamel}$ values
555	can be influenced by a combination of factors including the δ^{18} O value of surface water,
556	aridity and animal physiology (Kohn and Cerling, 2002). We do not think that
557	physiological changes are responsible for the increase in $\delta^{18}O_{enamel}$ values as we observe
558	it among multiple herbivore families and consider it unlikely that multiple disparately
559	related herbivore families would converge upon identical physiological changes across
560	this time span. Consequently, we must consider the influence of changes in the $\delta^{18}O$
561	value of surface water and changes in aridity on the observed increase in $\delta^{18}O_{enamel}$ values
562	between the fossil teeth at Langebaanweg and Elandsfontein.
563	
564	5.2.1 Oxygen isotopic composition of reconstructed surface water
565	In modern ecosystems $\delta^{18}O_{enamel}$ values of hippopotamids closely track the $\delta^{18}O$
566	values of meteoric water (Bocherens et al., 1996) and as such, fossil hippopotamid
567	$\delta^{18}O_{enamel}$ values can be used to reconstruct the $\delta^{18}O$ values of meteoric waters (Levin et
568	al., 2006). We used hippopotamid $\delta^{18}O_{\text{enamel}}$ values from Langebaanweg ($n = 18$) and
569	Elandsfontein ($n = 9$) to estimate the δ^{18} O values of the surface waters in which these
570	hippopotamids lived, which would reflect a combination of the δ^{18} O value of regional
571	precipitation and the hydrological condition of the local surface waters. We were not able
572	to estimate the δ^{18} O values of the surface waters at Hoedjiespunt because there are no
573	hippopotamid teeth preserved at the site (Stynder, 1997). We estimated δ^{18} O values of
574	local surface waters from the hippopotamid $\delta^{18}O_{enamel}$ values by considering both the
575	5.4±1.3‰ enrichment in δ^{18} O between local surface water and hippopotamid body water
576	reported by Levin et al. (2006) for modern hippopotamids and the carbonate-water

 $^{18}\text{O}/^{16}\text{O}$ fractionation relationship reported by Kim and O'Neil (2005), assuming that 577 578 tooth formation formed at typical mammalian body temperatures of 37°C. Using this approach, we reconstruct the average δ^{18} O values of local surface 579 580 water to -3.9±1.6‰ at Langebaanweg and -0.3±1.5‰ at Elandsfontein. For comparison, 581 spring, tap and standing water nearby modern springs exhibit a mean δ^{18} O value of -1.7±2.2‰ (n = 4) (Table S4). The similarity between the δ^{18} O values of the 582 583 reconstructed mid-Pleistocene water and that of modern waters within the Elandsfontein 584 vicinity indicate that hydrological conditions of waters near spring systems in the region 585 may not have not changed greatly since the mid-Pleistocene. However, the 3.6±1.8‰ increase in reconstructed surface water δ^{18} O values between Langebaanweg and 586 587 Elandsfontein requires further explanation. The possible explanations for this ~4‰ 588 increase include 1) a change in regional precipitation patterns as a result of changes in global climatic patterns that would affect precipitation δ^{18} O values and 2) a change in the 589 590 type of surface waters (rivers vs. springs) that the hippopotamids were living in during 591 the early Pliocene vs. the mid-Pleistocene. Here we review the potential roles of climate change and hydrological setting on the increase in δ^{18} O values of surface waters in 592 593 southwestern South African between the early Pliocene and the mid-Pleistocene.

594

595

5.2.2 Global cooling

596 Decreased global temperatures and increased ice volume affected δ^{18} O values of 597 precipitation globally between the Pliocene and Pleistocene with the onset of glacial and 598 interglacial cycles (Zachos et al., 2001) but it is not clear how these oscillations affected 599 δ^{18} O values of precipitation in southern Africa. A study of δ^{18} O values from speleothem

600	carbonate from Buffalo Cave in South Africa (Hopley et al., 2007) that dates to the
601	Pliocene/early Pleistocene (1.99 to 1.52 Ma) can provide perspective on the amplitude of
602	change in the δ^{18} O values of meteoric water that we would expect between glacial and
603	interglacial periods in southern Africa. Hopley et al. (2007) determine that there may be a
604	~2‰ increase in δ^{18} O values of regional precipitation between interglacials and glacials
605	based on a combination of temperature and ice-volume effects. Despite some work that
606	attributes the fossils at Elandsfontein to an interglacial interval based on the size of fossil
607	carnivores (Klein et al., 2007), this assignment is less certain from more recent work at
608	Elandsfontein (Braun et al., 2013). Regardless of whether the Elandsfontein fossils
609	represent an interglacial or glacial interval, the maximum amount of change in $\delta^{18}O$
610	values of precipitation that we would expect between glacials and interglaicals is $\sim 2\%$,
611	which is not enough to explain a ~4‰ difference in δ^{18} O values of surface water between
612	the early Pliocene and mid-Pleistocene.
613	
614	5.2.3 Rainfall amount
615	The negative correlation between rainfall amount and the $\delta^{18}O$ value of rain is
616	termed the "amount effect" (Dansgaard, 1964). This effect must be considered in the
617	interpretation of the ~4‰ increase in δ^{18} O values of reconstructed surface waters. If
618	southwestern South Africa became more arid between the early Pliocene and the

619 mid-Pleistocene, as indicated by offshore archives (e.g., Marlow et al., 2010; Dupont et

- al., 2013), then we might expect to see indications of less rainfall in the reconstructed
- 621 surface water δ^{18} O values. Modern precipitation data from Cape Town indicate that the
- 622 "amount effect" is limited in southwestern South Africa (Midgley and Scott, 2004; Harris

623	et al., 2010; West et al., 2014); it is equivalent to -10mm/1‰ δ^{18} O for monthly winter
624	rainfall (based on δ^{18} O values of monthly rainfall reported in Harris et al. (2010)) and
625	thus very little of the variation in $\delta^{18} O$ values of precipitation in modern southwestern
626	South Africa can be explained by amount rainfall. In comparison, Panama (WGS-84
627	Lat/Long: 9.00970, -79.60324) has a strong "amount effect" with -35 mm rainfall for
628	every 1‰ increase in the δ^{18} O value of rainfall (Higgins and MacFadden, 2004).
629	In addition, we do not expect to observe an "amount effect" in southwestern
630	South Africa because this oxygen isotopic effect mostly occurs where temperatures are
631	> 20°C and where there is high humidity or significant rainfall (e.g., Rozanski et al.,
632	1993), a pattern seen at collection sites globally (IAEA/WMO, 2001). The majority of
633	rain in this region falls in the winter and it is associated with cold, westerly fronts; it is
634	unlikely that average winter temperatures were $> 20^{\circ}$ C. If temperatures during the rainy
635	season were $> 20^{\circ}$ C during the Pliocene and Pleistocene, then it could have been warm
636	enough for the growth of C_4 grass. The $\delta^{13}C$ values of fossil enamel from grazers,
637	however, suggest that there was little C ₄ grass in this region.
638	Although a change in the δ^{18} O values of rainfall related to moisture source may

639 contribute to the increase in the δ^{18} O values of rainfall, it is unlikely that this would 640 represent a substantial contribution to the full ~4‰ increase documented between the 641 Pliocene and mid-Pleistocene. If there had been a change in the rainfall related moisture 642 source from the east (i.e., contribution of summer rainfall), then we would expect to see 643 the $\delta^{13}C_{enamel}$ values of some large mammalian herbivores to be more positive than what 644 is calculated for a pure C₃ diet because they would be incorporating C₄ grasses that grow 645 during the summer months into their diet. We find that the majority of $\delta^{13}C_{enamel}$ values

647	values between the fossil herbivores at Langebaaweg and Elandsfontein (Fig. 4).
648	Furthermore, models of regional climate indicate that the source of atmospheric moisture,
649	Atlantic water off the coast of southwestern South Africa, would have been constrained
650	by relatively stable regional meteorological factors (e.g. ICTZ, Agulhas Current,
651	Subtropical convergence zone and Benguela Current; McClymont et al., 2005) and thus
652	would not have drastically changed between the early Pliocene and mid-Pleistocene.
653	
654	5.2.4 Depositional mode and surface water
655	A change in the local hydrology and δ^{18} O value of surface water might be
656	responsible for the increase $\delta^{18}O_{enamel}$ values between Langebaanweg and Elandsfontein.
657	Today much of the coastal plain of southwestern South Africa is fed by ground water and
658	many areas have standing water associated with artesian wells. The depositional
659	environments of the Varswater Formation (i.e., the Langebaanweg fossil site) indicate the
660	presence of fluvial and estuarine waters (Roberts et al., 2011). Various sedimentological
661	studies indicate that the paleo-Berg River in the early Pliocene had a southerly trajectory
662	and emptied into the embayment which is today the Saldanha Bay as opposed to
663	emptying into the Atlantic Ocean in St. Helena Bay as the Berg River does today (e.g.,
664	Roberts et al., 2011; Fig.1). Although a previous study of Elandsfontein suggested the
665	presence of fluvial activity (Butzer, 1973), recent investigations document the complete
666	lack of any sedimentary structures that would support a fluvial explanation for the
667	sediments in which fossils at Elandsfontein have been found (Braun et al., 2013).
668	Geomorphological reviews emphasize that large Cenozoic eolianites as well as granite

are within the range expected for animals with pure C_3 diets and no change in $\delta^{13}C_{\text{enamel}}$

669	outcrops act as barriers for any fluvial systems west of the Salt River and south of the
670	Berg River (Mabbutt, 1952). As a result the main source of surface water in the region is
671	provided by springs fed by the large underground Elandsfontyn and Langebaan Road
672	aquifers (Brumfitt et al., 2013). Thus the δ^{18} O values of the enamel from large, mid-
673	Pleistocene mammals at Elandsfontein likely reflect the δ^{18} O values of isolated springs
674	distributed around the landscape. The waters from the Berg River headwaters have $\delta^{18}O$
675	values today that range from -6.0% to -4.0% (Weaver and Telma, 2005; West et al.,
676	2014), whereas δ^{18} O values of spring and tap waters surrounding the Elandsfontein
677	vicinity today range from -3.6 to -1.9‰ (Table S4; Midgley and Scott, 1994; West et al.,
678	2014; this study). There is a 0.4 to 4.1‰ difference in δ^{18} O values between surface
679	waters sourced from the Berg River compared with waters from springs near
680	Elandsfontein. Standing spring water at Elandsfontein has been evaporated and yields
681	$\delta^{18}O$ value of 1.5‰. Furthermore, the average $\delta^{18}O$ value of reconstructed surface water
682	at Elandsfontein (-0.3 \pm 1.5‰) sits within the expected range of water near the
683	Elandsfontein locality today. If offsets between $\delta^{18}O$ values of waters from the Berg
684	River and from springs in the study area were consistent over the last 5 myr, then the
685	~4‰ increase in reconstructed surface water $\delta^{18}O$ values from tooth enamel between
686	Langebaanweg and Elandsfontein fossil sites can be explained solely by a difference in
687	local hydrology. At Langebaanweg, hippopotamids likely spent much of their time in
688	waters that derived from the paleo-Berg River, whereas some four million years later, the
689	hippopotamids from the Elandsfontein fossil deposits likely spent much of their time in
690	water bodies that were fed by springs. The differences in the enamel δ^{18} O values of these

two hippopotamid populations may be best explained by these local differences types ofwater bodies in which they wallowed.

693

694 *5.2.5 Aridity*

Aridity can have an effect on $\delta^{18}O_{enamel}$ values in multiple ways. Aridity can be 695 the result of decreased rainfall amount which will affect $\delta^{18}O_{enamel}$ values due to a change 696 in δ^{18} O values of precipitation that then contributes to the water that animals ingest. 697 However, the degree of aridity may influence $\delta^{18}O_{enamel}$ values independent of any 698 changes in the δ^{18} O values of precipitation via the ingestion of leaf water, which becomes 699 greatly enriched in ¹⁸O relative to ¹⁶O in arid climates (Levin et al., 2006). The $\delta^{18}O_{enamel}$ 700 701 values of animals that are not obligate drinkers (e.g., giraffes and oryx) are sensitive to 702 aridity in part because a large fraction of their body water may come from leaf water. The strong relationship between aridity and $\delta^{18}O_{enamel}$ values of these Evaporation Sensitive 703 704 (ES) animals, taxa whose body water is derived largely from leaf water, today can be used to evaluate aridity in the past by comparing $\delta^{18}O_{enamel}$ values of ES animals to those 705 706 from Evaporation Insensitive (EI) animals, taxa whose body water is derived largely from ingested surface water (e.g., hippopotamids and elephantids). The $\delta^{18}O_{enamel}$ values of EI 707 708 taxa do not vary with aridity and can be used to control for changes in meteoric water δ^{18} O values (Levin et al., 2006). The $\varepsilon_{\text{ES-EI}}$ between δ^{18} O_{enamel} values of ES and EI taxa is 709 710 greater in more arid environments than in less arid environments (Levin et al., 2006). 711 We evaluated whether increased aridity could explain the ~4‰ increase in enamel 712 δ^{18} O values between the early Pliocene and mid-Pleistocene by comparing the $\varepsilon_{\text{ES-EI}}$ of δ^{18} O_{enamel} values of individual teeth from Langebaanweg (n = 47) and Elandsfontein 713

714	(n = 16), where hippopotamids (i.e., <i>Hippopotamus</i>) are the representative EI taxa and
715	giraffids (i.e., <i>Sivatherium</i>) are the representative ES taxa. Calculated ε_{ES-EI} values are
716	+3.0±1.9‰ and +2.7±1.9‰ for Langebaanweg and Elandsfontein, respectively. There is
717	no large difference between the $\varepsilon_{\text{ES-EI}}$ values for the two populations, suggesting no
718	change in aridity between the Pliocene and mid-Pleistocene environments in
719	southwestern South Africa. However, we cannot simply evaluate aridity as outlined
720	above if 1) there were changes in $\delta^{18}O$ values of surface water due to the differences in
721	depositional setting between Langebaanweg and Elandsfontein and 2) if the behavior of
722	EI and ES taxa was different during the Pleistocene and the Pliocene. First, $\delta^{18}O_{enamel}$
723	values from hippopotamids might not be closely tracking precipitation $\delta^{18}O$ values during
724	the mid-Pleistocene in the same way as in the early Pliocene if hippopotamids from
725	Elandsfontein wallowed in pools of evaporated spring water, whereas hippopotamids
726	from the Langebaanweg collection spent time immersed in river waters. Our compilation
727	of δ^{18} O values from modern waters in the region indicates that spring-based water
728	sources have more positive δ^{18} O values than that of river waters (Table S4). Second, it is
729	important to note that in this analysis we use the genus Sivatherium rather than Giraffa as
730	the ES taxon. Although these two taxa are within the family Giraffidae, isotopic studies
731	from eastern Africa indicate that Sivatherium underwent a major transition during the
732	Pliocene and Pleistocene to incorporate more graze into their diet, while Giraffa did not
733	(Cerling et al., 2015). Thus, it is feasible that sensitivity to aridity was different between
734	these two taxa such that Sivatherium might not be an appropriate ES taxon to use in the
735	$\delta^{18}O_{enamel}$ -based aridity index proposed by Levin et al. (2006).

While we cannot rule out the effects of evaporation on surface water δ^{18} O values. 736 737 we do not think that aridity is the primary driver of the $\sim 4\%$ increase in reconstructed surface water δ^{18} O values between the early Pliocene and the mid-Pleistocene. It is 738 unlikely that we would observe a uniform increase in the average δ^{18} O_{enamel} values of 739 740 herbivore families from Langebaanweg and Elandsfontein because hippopotamids would have remained in the water, somewhat buffered from increased aridity, resulting in a 741 742 smaller shift for hippopotamids than for other herbivore families. Furthermore, the ~4‰ increase in reconstructed surface water δ^{18} O values between fossil sites can be explained 743 solely by a shift from riverine water to groundwater-fed springs as discussed in Section 744 745 5.2.4. Given the present data, we view this as the simplest way to explain the trends in the fossil δ^{18} O_{enamel} values we observe. 746

747

748 5.3 Theropithecus diet at Elandsfontein

749 The diet of fossil *Theropithecus* species from southern and eastern Africa have 750 been evaluated to determine the partitioning of resources between primates and other 751 mammalian species as well as to better define the influences that contributed to the 752 success of Homo (e.g., Lee-Thorp et al., 1989; Codron et al., 2005; Cerling et al., 2013; 753 Levin et al., 2015). A single *Theropithecus* mandible was excavated from Elandsfontein (WCRP collection) and this specimen has a $\delta^{13}C_{enamel}$ value of -10.2‰, which is 754 755 indicative of a diet composed of C3 vegetation (Fig. 4; Table S2). This is the only $\delta^{13}C_{enamel}$ value of *Theropithecus* from Pleistocene southwestern South Africa. 756 Contemporaneous *Theropithecus* $\delta^{13}C_{enamel}$ values from eastern Africa and in other 757 locations in South Africa indicate that *Theropithecus* consumed C₄ graze (e.g., Codron et 758

759 al., 2005; Cerling et al., 2013). The addition of carbon isotope data from *Theropithecus* at 760 Elandsfontein shows that *Theropithecus* was able to survive on diets composed C₃ 761 vegetation during the Pleistocene (whether it was browse or graze) if it lived in 762 environments where C₃ vegetation was dominant, as with the modern gelada baboon 763 (Levin et al., 2008).

764

765

5.4 Hominin paleoenvironment at mid-Pleistocene Elandsfontein

766 The sedimentary record at Elandsfontein provides unique insights into the ecology 767 of southwestern South Africa during the mid-Pleistocene, which is not well documented 768 elsewhere in southern Africa (Klein et al., 2007; Braun et al., 2013). The archives at 769 Elandsfontein also provide evidence for some of the earliest hominin behavior in a winter 770 rainfall zone in southern Africa. The association of the fossil fauna with Acheulean stone 771 tools (i.e., hominin technology that indicate behavioral advances intersecting with the 772 biological change) in an excavated context at Elandsfontein allows us to use inferences about paleoclimate from $\delta^{13}C_{enamel}$ and $\delta^{18}O_{enamel}$ values to develop an understanding of 773 774 hominin ecology. This is especially important because of the age of this locality (1.0 -775 0.6 Ma) situates the site around the time of the mid-Pleistocene transition in climate 776 dynamics (McClymont et al., 2005). Large mammalian remains at Elandsfontein indicate 777 that there were both large browsing and grazing herbivore communities, suggesting that 778 the landscape would have had sufficient resources to assure the survival of these animals, 779 in stark contrast to the modern ecosystems in this area. This ancient landscape clearly 780 was a draw for hominins, as indicated by the thousands of stone tools recovered from this 781 locality (Singer and Wymer, 1968; Klein, 1983; Braun et al., 2013) as well as fossil

782	remains of early humans (Drennan, 1953). The springs at Elandsfontein (Braun et al.,
783	2013) would have been a resource-rich environment for early humans, if Elandsfontein
784	had been buffered from the regional aridification during the mid-Pleistocene. This is
785	consistent with studies of Pleistocene archaeological sites where springs and
786	groundwater-fed areas have been considered to be important resource for hominins (e.g.,
787	Cuthbert and Ashley, 2014).
788	
789	
790	6. Conclusions
791	The results of this study add to a growing body of work, from both terrestrial- and
792	marine-based archives, on how climate and vegetation in southwestern South Africa have
793	changed over the last 5 myr (Fig. 5). The main conclusions from this study are:
794	1) The $\delta^{13}C_{enamel}$ values of fossil teeth from southwestern South Africa indicate
795	that both browsing and grazing herbivores had diets dominated by C_3
796	vegetation, which suggests the dominance of the winter rainfall season during
797	the time intervals of fossil deposition at Langebaanweg, Elandsfontein and
798	Hoedjiespunt. We can not, however, totally discount the presence of C ₄ grasses
799	during the mid-Pleistocene and late Pleistocene.
800	2) There is an increase in reconstructed surface water δ^{18} O values from
801	southwestern South Africa between the early Pliocene and mid-Pleistocene of
802	~4‰. We attribute the increase in δ^{18} O values of surface waters primarily to a
803	shift in hydrology and depositional environments along the coastal plain of
804	southwestern South Africa. The major source of water for animals during the

805 Pliocene appears to have been a fluvial system whereas springs were likely the806 dominant surface waters in the mid-Pleistocene.

- 807 3) While increased aridity in southwestern Africa is indicated both by the marine808 and terrestrial-based proxy records compiled in this study, it is not clearly
 809 evident in the isotopic record of large mammals presented here. The
- 810 Elandsfontein archaeological site may have been buffered from regional mid-
- 811 Pleistocene aridification as a result of the available surface water indicated by
- 812 ancient spring deposits. If springs were annually active, then water and other 813 resources associated with springs would have been available to mammals, such
- 814 that the area may have served as an oasis of sorts within a relatively drier 815 landscape.
- 4) This study highlights the importance of considering depositional environment
 and the local environmental setting when understanding how specific terrestrial
 environments responded to regional climate and environmental change.
- 819
- 820

821 Acknowledgments

We thank all of the people and institutions that played a role in this research.
We thank Heritage Western Cape for providing clearance (Permit No: 2008/11/003). This
research would not have been conducted without assistance from the West Coast Fossil
Park and the owners and staff of Elandsfontein property (now Elandsfontein Exploration
and Mining). Judith Sealy and Chris Harris provided thoughtful insight during the
duration of this project. We would like to thank Michael Bender for his contributions to

828 this research, which includes but is not limited to lab support for the preparation and 829 analysis of the enamel phosphate oxygen isotopes to determine the preservation of 830 primary oxygen isotopes in enamel carbonate and comments on the manuscript. The 831 collection of fossil teeth needed for this project could not have been completed without 832 the field assistance of the students that attend the University of Cape Town, Department 833 of Archeology field course (Archaeology in Practice AGE 3013) at Elandsfontein (2008 834 to 2014), nor without Jessica Plasket and Kathryn Braun who each played a major role in 835 the excavations and the collection of fossil teeth. We thank the Iziko Museums of South 836 Africa for allowing us to sample fossil teeth from their collection (2010). Nicole Deluca 837 and Eric Ryberg made the oxygen and hydrogen analyses of regional water from South 838 Africa possible. We would also like to thank the constructive comments of two 839 anonymous reviewers. This research was supported by grants from the National Science 840 Foundation (BCS 1219494 and BCS 1219455) and with funds from the Johns Hopkins 841 University, Department of Earth and Planetary Sciences. 842

843 **References:**

- Annan, J.D., Hargreaves, J.C., 2013. A new global reconstruction of temperature changes
- at the Last Glacial Maximum. Climate of the Past. 9, 367-376.
- 846
- 847 Bar-Matthews, M., Maren, C.W., Jacobs, Z., Karkanas, P., Fisher, E.C., Herries, A.I.R.,
- Brown, K., Williams, H.M., Bernatchez, J., Ayalon, A., Nilssen, P.J., 2010. A high
- 849 resolution and continuous isotopic speleothem record of paleoclimate and
- paleoenvironment from 90 to 53 ka from Pinnacle Point on the south coast of South
- Africa. Quaternary Science Review. 29, 2131-2145.
- 852
- 853 Berger, L.R., Parkington, J.E., 1995. Brief communication: a new Pleistocene hominid-
- bearing locality at Hoedjiespunt, South Africa. American Journal of Physical
 Anthropology. 98, 601–609.
- 856 Besaans, A.J., 1972. 3217D & 3218 C-st. Helenabaai 3317B & 3318A Saldanhabaai.
- 857 Geological Survey of South Africa. Department of Mines. Pretoria.
- Bocherens, H., Kock, P.L., Mariotti, A., Geraads, D., Jaeger, J., 1996. Isotopic
- Biogeochemistry (¹³C, ¹⁸O) of mammalian enamel from African Pleistocene hominid sites. Palaios. 11, 306-318.
- Boom, A., Carr, A.S., Chase, B.M., Grimes, H.L., Meadows, M.E., 2014. Leaf wax n
- 862 alkanes and δ^{13} C values of CAM plants from arid southwest Africa. Organic
- 863 Geochemistry. 67, 99-102.
- Braun, D.R., Levin, N.E., Stynder, D., Herries, A.I.R., Archer, W., Forrest, F., Roberts,
- B65 D.L., Bishop, L.C., Matthews, T., Lehmann, S.B., Pickering, R., Fitzsimmons, K.E.,
- 866 2013. Mid-Pleistocene hominin occupation at Elandsfontein, Western Cape, South
- Africa. Quaternary Science Reviews. 82, 145-166.
- Brumfitt, I., Chinsamy, A., Compton, J., 2013. Depositional environment and bone
 diagenesis of the Mio/Pliocene Langebaanweg Bonebed, South Africa, South African
 Journal of Geology 116, 241-258.
- 871
- Bryant, J.D., Koch, P.L., Froelich, P.N., Showers, W.J., Genna, B.J., 1996. Oxygen
 isotope partitioning between phosphate and carbonate in mammalian apatite. Geochimica
- 874 et Cosmochimica Acta. 60, 5145-5148.
- Butzer, K.W., 1973. Re-evaluation of the geology of the Elandsfontein (Hopefield) Site,
 South-western Cape, South Africa. South Africa Journal of Science. 69, 234-238.

- 877 Cerling, T.E., Harris, J.M., 1999. Carbon isotope fractionation between diet and
- bioapatite in ungulate mammals and implications for ecological and paleoecologicalstudies. Oecologia. 120, 347-363.
- Cerling, T.E., Harris, J.M., Passey, B.H., 2003. Dietary preferences of East African
 Bovidae based on stable isotope analysis. Journal of Mammalogy. 84, 456-471.
- 882 Cerling, T.E., Andanje, S.A., Blumenthal, S.A., Brown, F.H., Chritz, K.L., Harris, J.M.,
- Hart, J.A., Kirera, F.M., Kaleme, P., Leakey, L.N., Leakey, M.G., Levin, N.E., Manthi,
- 884 F.K., Passey, B.E., Uno, K.T., 2015. Dietary changes of large herbivores in the Turkana
- Basin, Kenya from 4 to 1 Ma. Proceedings of the National Academy of Sciences. 112,
 11467-11472.
- 887 Cerling, T.E., Manthi, F.K, Mbua, E.N., Leakey, L.N., Leakey, M.G., Leakey, R.E.,
- Brown, F.H., Grine, F.E., Hart, J.A., Kaleme, P., Roche, H., Uno, K.T., Wood, B.A.,
- 889 2013. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proceedings
- of the National Academy of Science. 110, 10501-10506.
- Chase, B. M. and Meadows, M. E., 2007. Late Quaternary dynamics of southern Africa's
 winter rainfall zone. Earth-Science Reviews. 84, 103-138.
- Chenery, C.A., Pashley, V., Lamb, A.L., Sloane, H.J., Evans, J.A., 2012. The oxygen
 isotope relationship between the phosphate and structural carbonate fractions of human
- bioapatite. Rapid Communications in Mass Spectrometry. 26, 309-319.
- Codron, D., Luyt, J., Lee-Thorp, J.A., Sponheimer, M., de Ruiter, D., Codron, J., 2005.
 Utilization of savanna-based resources by Plio-Pleistocene baboons. South African
- 898 Journal of Science. 101, 245-248.
- 899 Cowling, R., 1992. Fynbos: South Africa's unique floral kingdom. University of Cape900 Town Press, Cape Town. 156 pp.
- 901 Cowling, R.M., Lombard, A.T., 2002. Heterogeneity, speciation/extinction history and
- 902 climate: explaining regional plant diversity patterns in the Cape Floristic Region.
- 903 Diversity and Distributions. 8, 163-179.
- Cowling, R.M., Ojeda, F., Lamont, B.B., Rundel, P.W., Lechmere-Oertel, R., 2005.
- 905 Rainfall reliability, a neglected factor in explaining convergence and divergence of plant
- traits in fire-prone mediterranean-climate ecosystems. Global Ecology and
- 907 Biogeography. 14, 509-519.
- 908
- 909 Cuthbert, M.O., Ashley, G.M., 2014. A Spring Forward for Hominin Evolution in East
- 910 Africa. PLoS ONE. 9, 9e107358.
- 911
- Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus. 16, 436-468.

- 913 deMenocal, P.B., 2004. African climate change and faunal evolution during the
- 914 Pliocene-Pleistocene. Earth and Planetary Science Letters. 220, 3-24.
- Drennan, M.R., 1953. The Saldanha skull and its associations. Nature 172, 791-793.
- 916 Dupont, L., 2011. Orbital scale vegetation change in Africa. Quaternary Science
- 917 Reviews. 30, 3589-3602.
- 918 Dupont, L., Donner, B., Vidal, L., Perez, E., Wefer, G., 2005. Linking desert evolution
- and coastal upwelling: Pliocene climate change in Namibia. Geology. 33, 461-464.
- 920 Dupont, L.M., Rommerskirchen, F., Mollenhauer, G., Schefuß, E., 2013. Miocene to
- 921 Pliocene changes in South African hydrology and vegetation in relation to the expansion 922 of $C_{\rm c}$ plants. Earth Planetary Science Letters 375, 409, 417
- 922 of C₄ plants. Earth Planetary Science Letters. 375, 408-417.
- Etourneau, J., Martinez, P., Blanz, T., Schneider, R., 2009. Pliocene-Pleistocene
- variability of upwelling activity, productivity, and nutrient cycling in the Benguela
- 925 region. Geology. 37, 871-874.
- Eze, P.N. and Meadows, M.E., 2014. Multi-proxy palaeosol evidence for late Quaternary
- 927 (MIS 4) environmental and climate shifts on the coasts of South Africa. Quaternary928 International. 343, 159-168.
- 929 Faith, J.T., 2011. Ungulate community richness, grazer extinctions, and human
- 930 subsistence behavior in southern Africa's Cape Floral Region. Palaeogeography,
 931 Palaeoclimatology, Palaeoecology 306, 219-227.
- Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and
 photosynthesis. Annual Reviews of Plant Physiology and Molecular Biology. 40,
 503-537.
- 935 February, E., 1992. Archaeological charcoals as indicators of vegetation change and
- human fuel choice in the late Holocene at Elands Bay, western Cape Province, SouthAfrica, J. Archaeol. Sci. 19, 347-354.
- Franz-Odendaal, T., Lee-Thorp, J., Chinsamy, A., 2002. New evidence for the lack of C₄
 grassland expansions during the early Pliocene at Langebaanweg, South Africa.
 Delachiplane, 28, 278, 288
- 940 Paleobiology. 28, 378-388.
- 941 Franz-Odendaal, T., Chinsamy, A., Lee-Thorp, J.A., 2004. High prevalence of enamel
- 942 hypoplasia in an early Pliocene giraffid (*Sivatherium hendeyi*) from South Africa. Journal
- 943 of Vertebrate Paleontology. 24, 235-244.
- 944
- Halas, S., Skryzpek, G., MeierAugenstein, W., Pelc, A., Kemp, H. F., 2011.
- 946 Interlaboratory calibration of new silver orthophosphate comparison materials for the
- stable oxygen isotope analysis of phosphates. Rapid Communications in Mass

- 948 Spectrometry. 25, 579-584.
- 949 Hare, V., Sealy, J., 2013. Middle Pleistocene dynamics of southern Africa's winter
- 950 rainfall zone from δ^{13} C and δ^{18} O values of Hoedjiespunt faunal enamel.
- Palaeogeography, Palaeoclimatology, Palaeoecology. 374, 72-80.
- Harris, C., Oom, B., Diamond, R., 1999. A preliminary investigation of the oxygen and
 hvdrogen isotope hydrology of the greater Cape Town area and an assessment of the
- potential for using stable isotopes as tracers. Water SA. 25, 15-24.
- Harris, C., Burgers, C., Miller, J., Rawoot, F., 2010. O- and H-isotope record of Cape
- Town rainfall from 1996 to 2008, and its application to recharge studies of Table
- 957 Mountain groundwater, South Africa. South African Journal of Geology. 113, 33-56.
- Harris, C., Diamond. R., 2013. Oxygen and hydrogen isotopes record of Cape Town
- rainfall and its application to recharge studies of table mountain groundwater, in: Abiye,
- 960 T. (Ed.), The Use of Isotope Hydrology to Characterize and Assess Water Resources in
- 961 Southern(ern) Africa. Water Research Commission, Gezina, South Africa, pp. 38-52.
- 962 Hattersley, P.W., 1982. δ^{13} C values of C₄ types in grasses. Australian Journal of Plant 963 Physiology. 9, 139-154.
- Hendey, Q. B., 1976. The Pliocene fossil occurrences in 'E' quarry, Langebaanweg,
 South Africa. Annals of the South African Museum. 69, 215–247.
- 966 Higgins, P., MacFadden, B.J., 2004. The "Amount Effect" recorded in oxygen isotopes of
- 967 Late Glacial horse (*Equus*) and bison (*Bison*) teeth from the Sonoran and Chihuahuan
- 968 deserts, southwestern United States. Palaeogeography, Palaeoclimatology,
- 969 Palaeoecology. 206, 337-353.
- Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F., Wefer, G., 2013. The role of
 fire in Miocene to Pliocene C₄ grassland and ecosystem evolution. Nature Geoscience. 6,
 1027–1030.
- 973 Hopley, P.J., Weedon, G. P., Marshall, J. D., Herries, A. I. R., Latham, A. G.,
- 974 Kuykendall, K. L., 2007. High- and low-latitude orbital forcing of early hominin habitats
- 975 in South Africa. Earth and Planetary Science Letters. 256, 419-432.
- 976 Iacumin, P., Bocherens, H., Mariotti, A., Longinelli, A., 1996. Oxygen isotope analyses
- 977 of co-existing carbonate and phosphate in biogenic apatite: A way to monitor diagenetic
- alteration of bone phosphate? Earth and Planetary Science Letters. 142, 1-6.
- 979 IAEA/WMO, 2001. Global Network of Isotopes in Precipitation. The GNIP Database
 980 (available at: http://isohis.iaea.org.).

981 Imbrie, J., Boyle, E.A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, 982 J., Martinson, D. G., McIntyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., 983 Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J., Toggweiler, J. R., 1992. On 984 the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch 985 Forcing. Paleoceanography. 7, 701-738. 986 Kim, S. and O'Neil, J.R., 2005. An experimental study of oxygen isotope fractionation 987 between inorganically precipitated aragonite and water at low temperatures; discussion. 988 Geochimica et Cosmochimica Acta. 69, 3195-3197. 989 Klein, R. G., 1978. The fauna and overall interpretation of the 'Cutting 10' Acheulean site 990 at Elandsfontein (Hopefield), southwestern Cape Province, South Africa. Quaternary 991 Research. 10, 69-83. 992 Klein, R.G., 1982. Patterns of ungulate mortality and ungulate mortality profiles from 993 Langebaanweg (early Pliocene) and Elandsfontein (middle Pleistocene). South-Western 994 Cape Province, South Africa, Annals of the South African Museum 90, 49-94. 995 996 Klein, R.G., 1983. Paleoenvironmental implications of Quaternary large mammals in the 997 Fynbos biome, South African National Progress Reports 75, 116-138. 998 999 Klein, R.G., 1991. Size variation in the Cape Dune Molerat (*Bathvergus suilus*) and Late 1000 Quaternary climatic change in the Southwestern Cape Province, South Africa. Quaternary 1001 Research. 36, 243-256. 1002 1003 Klein, R.G., Cruz-Uribe, K., 1991. The boyids from Elandsfontein, South Africa, and 1004 their implications for the age, palaeoenvironment, and origins of the site. The African 1005 Archaeological Review. 9, 21-79. 1006 Klein, R.G., Avery, G., Cruz-Uribe, K., Steele, T.E., 2007. The mammalian fauna 1007 1008 associated with an archaic hominin skullcap at later Acheulean artifacts at Elandsfontein, 1009 Western Cape Province, South Africa. Journal of Human Evolution. 52, 164-186. 1010 1011 Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of 1012 (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences. 1013 107, 19691-19695. 1014 1015 Kohn, M.J., Cerling, T.E., Stable isotope compositions of biological apatite. In Kohn, 1016 M.J., Rakovan, J., Hughes, J.M., (Eds.). Phosphates: Geochemical, Geobiological and 1017 Material Importance. Reviews in Mineralogy and Geochemistry. Mineralogical Society 1018 of America, Washington, DC. 48, 455-488. 1019 1020 Lee-Thorp, J.A., van der Merwe, N.J., Brain, C.K., 1989. Isotopic evidence for dietary 1021 differences between two extinct baboon species from Swartkrans. Journal of Human 1022 Evolution. 18, 183-189.

- 1023 Lee-Thorp, J., Beaumont, P., 1995. Vegetation and seasonality shifts during the Late
- 1024 Quaternary deduced from ${}^{13}C/{}^{12}C$ ratios of grazers at Equus Cave, South Africa.
- 1025 Quaternary Research. 43, 426-432.

Levin, N.E., Cerling, T.E., Passey, B.H., Harris, J.M., Ehleringer, J. R., 2006. A stable
isotope aridity index for terrestrial environments. Proceedings of the National Academy
of Sciences of the United States of America. 103, 11201-11205.

- 1029 Levin, N.E., Simpson, S.W., Quade, J., Cerling, T.E., Frost, S.R., 2008. Herbivore
- 1030 enamel carbon isotopic composition and environmental context of Ardipithecus at Gona,
- 1031 Ethiopia. In: Quade, J., Wynn, J.G., (Eds.), The Geology of Early Humans in the Horn of
- 1032 Africa. Geological Society of America Special Paper. 446, 215-234.

Levin, N.E., Haile-Selassie, Y., Frost, S.R., Saylor, B.Z., 2015. Dietary change among
hominins and cercopithecids in Ethiopia during the early Pliocene. Proceedings of the
National Academy of Science. 112, 12304-12309.

Luyt, J., Lee-Thorp, J., Avery, G., 2000. New light on Middle Pleistocene west coast
environments from Elandsfontein, Western Cape Province, South Africa. South African
Journal of Science. 96, 399-403.

- Mabbutt, J.A., 1956. The physiography and surface geology of the Hopefield fossil site.
 Transactions of the Royal Society of South Africa. 35, 21-58.
- Marlow, J., Lange, C., Wefer, G., Rosell-Mele, A., 2000. Upwelling intensification as
 part of the Pliocene-Pleistocene climate transition. Science. 290, 2288-2291.

1043 Martin, C., Bentaleb, I., Kaandorp, R., Iacumin, P., Chatri, K., 2008. Intra-tooth study of 1044 modern Rhinoceros enamel δ^{18} O; is the difference between phosphate and carbonate δ^{18} O 1045 a sound diagenetic test? Palaeogeography, Palaeoclimatology, Palaeoecology. 266, 1046 183-189.

- 1047 McClymont, E.L., Rosell-Melé, A., Giraudeau, J., Pierre, C., Lloyd, J.M., 2005.
- 1048 Alkenone and coccolith records of the mid-Pleistocene in the south-east Atlantic:

1049 Implications for the index and South African climate, Quaternary Science Reviews 24,1050 1559-1572.

- 1051
- Meadows, M.E., Baxter, A.J., Parkington, J., 1996. Late Holocene environments at
 Verlorenvlei, Western Cape Province, South Africa, Quaternary International 33, 81-95.
- Midgley, J., Scott, D., 1994. The use of stable isotopes of water (D and ¹⁸O) in
 hydrological studies in the Jonkershoek Valley. Water SA. 20, 151-154.
- 1056 O'Neil, J.R., Roe, L.J., Reinhard, E., Blake, R.E., 1994. A rapid and precise method of 1057 oxygen isotope analysis of biogenic phosphate. Israel Journal of Earth Sciences. 43,
- **1058 203-212**.

- 1059 Passey, B.H., Cerling, T.E., Schuster, G.T., Robinson, T.F., Roeder, B.L., Krueger, S.K.,
- 1060 2005. Inverse methods for estimating primary input signals from time-averaged isotope
- 1061 profiles. Geochimica et Cosmochimica Acta. 69, 4101-4116.

- 1065 Passey, B.H., Levin, N.E., Cerling, T.E., Brown, F.H., Eiler, J.M., 2010.
- 1066 High-temperature environments of human evolution in East Africa based on bond
- 1067 ordering in paleosol carbonates. Proceedings of the National Academy of Sciences of the
- 1068 United States of America. 107, 11245-11249.
- 1069 Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M.,
- 1070 Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M.
- 1071 Lipenkov, V.Y., Lorius, C., PÉpin, L., Ritz, C., Saltzman, E., Stievenard, M., 1999.
- 1072 Climate and atmospheric history of the past 420,000 years from the Vostok ice core,
- 1073 Antarctica. Nature. 399, 429-436.
- 1074 Patterson, D.B., Lehmann, S.B., Matthews, T., Levin, N.E., Stynder, D.D., Braun, D.R.,
- 1075 in revision. Stable isotope ecology of Cape dune mole-rats (Bathyergus suillus) from
- 1076 Elandsfontein, South Africa: implications for C₄ vegetation and hominin paleobiology in
- 1077 the Cape Floral Region. Palaeogeography, Palaeoclimatology, Palaeoecology.
- 1078 Radloff, F.G.T., 2008. The ecology of large herbivores native to the coastal lowlands of
 1079 the Fynbos Biome in the Western Cape, South Africa. Doctoral Dissertation, Department
 1080 of Botany, University of Stellenbosh, South Africa.
- 1081

Roberts, D.L., Bateman, M.D., Murray-Wallace, C.V., Carr, A.S., Holmes, P.J., 2009.
West coast dune plumes: climate driven contrasts in dunefield morphogenesis along the

- 1084 western and southern South African coasts. Palaeogeography, Palaeoclimatology,
- 1085 Palaeoecology. 271, 24-38.
- 1086 Roberts, D.L., Matthews, T., Herries, A.I.R., Boulter, C., Scott, L., Dondo, C., Mtembi,
- 1087 P., Browning, C., Smith, R.M.H., Haarhoff, P., Bateman, M.D., 2011. Regional and
- 1088 global context of the Late Cenozoic Langebaanweg (LBW) palaeontological site: West
- 1089 Coast of South Africa. Earth-Science Reviews. 106, 191-214.
- 1090 Rozanski, K., Aragua's-Aragua's, L., Gonfiantini, R., 1993. Isotopic patterns in modern
- 1091 global precipitation. In: Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S. (Eds.),
- 1092 Climate Change in Continental Isotopic Records. American Geophysical Union
- 1093 Geophysical Monograph. American Geophysical Union. Washington, DC. 78, 1-36.
- 1094
- 1095 Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M., Backman, J., 1989.
- 1096 Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean.1097 Paleoceanography. 4, 353-412.

<sup>Passey, B.H., Cerling, T.E., Levin, N.E., 2007. Temperature dependence of oxygen
isotope acid fractionation for modern and fossil tooth enamels. Rapid Communications in
Mass Spectrometry. 21, 2853-2859.</sup>

	1090 1099 1100	Ruxton, G.D., Wilkinson, D.M., 2011. Thermoregulation and endurance running in extinct hominins: Wheeler's models revisited, Journal of Human Evolution. 61, 169-175.
	1101 1102 1103 1104	Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., Zemsky, R., Global multi-resolution topography synthesis. Geochemistry Geophysics Geosystems. 10, Q03014.
	$1105 \\ 1106 \\ 1107 \\ 1108 $	Shackleton, N.J., Berger, A., Peltier, W.R., 1900. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edinburgh. 81, 251-261.
1100 1109 1110 1111	Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G., Schneider, D.A., 1995. A new late Neogene time scale: application to Leg 138 sites. Proceedings of Ocean Drilling Program Scientific Results. 138, 73-101.	
	1112 1113	Singer, R., Wymer, J., 1968. Archaeological investigations at the Saldanha skull site in South Africa. South African Archaeological Bulletin. 23, 63-74.
	$\begin{array}{c} 1114\\ 1115 \end{array}$	Sponheimer, M., Reed, K., Lee-Thorp, J.A., 2001. Isotopic palaeoecology of Makapansgat Limeworks Perissodactyla. South African Journal of Sciences. 97, 327-327.
	1116 1117 1118	Stynder, D.D., 1997. The use of faunal evidence to reconstruct site history at Hoedjiespunt 1 (HDP1). Western Cape. Masters Thesis. Department of Archaeology. University of Cape Town.
	1119 1120	Stynder, D.D., 2009. The diets of ungulates from the hominid fossil-bearing site of Elandsfontein, Western Cape, South Africa. Quaternary Research. 71, 62-70.
	1121 1122 1123	Stynder, D.D., 2011. Fossil bovid diets indicate a scarcity of grass in the Langebaanweg E Quarry (South Africa) late Miocene/early Pliocene environment. Paleobiology. 37, 126-139.
	1124 1125 1126	Stynder, D.D., Moggi-Cecchi, J., Berger, L.R., Parkington, J.E., 2001. Human mandibular incisors from the late Middle Pleistocene locality of Hoedjiespunt 1, South Africa. Journal of Human Evolution. 41, 369–383.
	1127 1128 1129	Tipple, B. J., Meyers, S.R., Pagani, M., 2010. Carbon isotope ratio of Cenozoic CO ₂ ; a comparative evaluation of available geochemical proxies. Paleoceanography. 25, PA3202.
	1130 1131 1132	Vennemann, T., Fricke, H., Blake, R., O'Neil, J., Colman, A., 2002. Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag ₃ PO ₄ . Chemical Geology. 185, 321-336.

- 1133 Vogel, J.C., Fuls, A., Ellis, R.P., 1978. The geographical distribution of Kranz grasses in
 1134 South Africa. South African Journal of Science. 74, 209-215.
- Weaver, J.M.C., Talma, A.S., 2005. Cumulative rainfall collectors A tool for assessinggroundwater recharge. Water SA. 31, 283-290.
- 1137 West, A.G., February, E. C., Bowen, G.J., 2014. Spatial analysis of hydrogen and oxygen
- stable isotopes ('isoscapes') in ground water and tap water across South Africa. Journal of
 Geochemical Exploration. 145, 213-222.
- 1140 Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and 1141 aberrations in global climate 65 Ma to present. Science. 292, 686-693.
- 1142 Zazzo, A., 2001. Validation méthodologique de l'utilisation des compositions isotopiques
- 1143 (¹³C, ¹⁸O) des bioapatites fossiles pour les reconstitutions des paléoenvironnement
- 1144 continentaux. Thèse de doctorat de l'université Pierre et Marie Curie, Paris 6.

Lehmann et al., Figure 1 (single column)

Lehmann et al., Figure 2 (single column)

Lehmann et al., Figure 3 (single column)

Age	Locality	Depositional	Substrate	Vegetation	Climate	Data sets	References
late Pleistocene (0.35 - 0.25 Ma)	Hoedjiespunt	environment Coastal	Sands	Shrubs and widespread grasslands	Glacial	Taxonomy ^a Stable isotopes ^a	Klein, 1983 Stynder, 1997 Hare and Sealy, 2013
mid-Pleistocene (~1.0 - 0.6 Ma)	Elandsfontein	Spring-fed and eolian	Eolian and marine sands, carbonate-leached sediments,pedogenicaly modified sands	Trees, shrubs, and seasonal grasses	Glacial and/or Interglacial	Taxonomy ^a Stable isotopes ^a Microwear ^a Sedimentology	Butzer, 1973 Klein, 1978 Luyt et al., 2000 Stynder, 2009 Braun et al., 2013
Pliocene (~5 Ma)	Langebaanweg	Fluvial and deltaic	Floodplain, marsh, and river channel deposits	Trees, shrubs, and seasonal grasses	Warm and wet	Taxonomy ^a Stable isotopes ^a Mesowear ^a Microwear ^a	Franz-Odendaal et al., 2002 Roberts et al., 2011 Stynder, 2011

Table 1: A summary of the terrestrial records of climate, vegetation and depositional environment from southwestern South Africa.

^a Datasets that apply to teeth.

		$\delta^{13}C_{enamel}$	$\delta^{13}C_{enamel}$ $\delta^{18}O_{enamel}$	
Taxon (family or tribe)	Dietary behavior ^b	(‰ VPDB±1σ)	(‰ VSMOW±1σ)	samples
<u>Hoedjiespunt (0.35 - 0.25 Ma)</u>				
Alcelaphini	grazer	-9.8±1.3	31±1.5	16
Bovini	grazer	-7.1±1.3	32.9±0.6	2
Reduncini	grazer	-10.2 ± 2.3	32.7±2.0	2
Antelopini	mixed feeder	-9.6±1.1	31.2±2.1	5
Neotragini	mixed feeder	-8.4±2.5	32.2±1.3	3
Cephalophini	browser	-10.4 ± 0.6	31.1±1.5	3
Tragelaphini	browser	-9.5±1.3	31.2±1.2	8
All Bovidae	-	-9.5±1.5	31.4±1.5	39
Elandsfontain (10,06 Ma)				
<u>Alcelanhini</u>	grazer	-10 3+1 2	32 6+1 9	19
Bovini	grazer	-10.3 ± 1.2	32.0 ± 1.9 33.8+1.6	19
Reduncini	grazer	-10.3±0.8	33.3 ± 7.7	0
Hippotragini	mixed feeder	-10.3 ± 1.3	33.3 ± 2.7 31.3+1.0	1
Neotragini	browser	-10.3 ± 1.3	37.5 ± 1.7 32.6±0.7	+ 2
Tragelanhini	browser	-12.3 ± 1.4	32.0 ± 0.7 34.6 ± 1.4	8
All Boyidae	biowsei	-11.0 ± 0.5 10.0 ±1.3	34.0 ± 1.4	123
Flenhantidae	- arozor	-10.0±1.5	30.8	125
Cercopithecidae	grazer	-0.5	31.2	1
Equideo	- arozor	-10.2	31.2 32.7 ± 1.0	1 22
Giraffidaa	browsor	-9.0 ± 0.7	32.7 ± 1.0	32 7
Uinnonotomidoo	biowsei	-11.0 ± 1.5 12.2 \pm 1.1	32.3 ± 2.0	/
Suidea	senn-aquatic	-12.5 ± 1.1	29.7 ± 1.3	9
Suidae	grazer	-9.9±1.4	28.0 ± 3.1	8
Rhinocerotidae	grazer and browser	-11.0±0.8	31.0±1.8	13
Langebaanweg (~5 Ma)				
Alcelaphini	browser to grazer	-10.8 ± 1.0	27.5±1.5	7
Reduncini	-	-10.7 ± 0.0	28.0 ± 2.1	2
All Bovidae	-	-10.7 ± 0.8	28 7±2 8	11
Equidae	grazer	-10.7 ± 1.4	28.1 ± 2.4	8
Giraffidae	browser	-114 ± 12	28.4 ± 2.0	29
Suidae	-	-11 8+1 0	27 7+0 9	4
Rhinocerotidae	grazer	-10 9+0 7	26.7 ± 0.9	4
Hinpopotamidae	semi-aquatic	-11 9+1 5	25.2 ± 1.4	18
mppopotamidae	50m-aquane	11.7-1.5	20.T±1./	10

Table 2: δ^{13} C and δ^{18} O values of fossil tooth enamel from sites in southwestern South Africa, averaged by family and bovid tribe.

^a In addition to the new isotopic data, the isotopic data from previously published papers are included to

determine the average $\delta^{13}C_{enamel}$ and $\delta^{18}O_{enamel}$ data for mammalian families and bovid tribes at each fossil site (Luyt et al., 2000; Franz-Odendaal et al., 2002; Hare and Sealy, 2013). See Table S2 for the compilation of data from individual teeth and the corresponding references.

^b References for the classification of dietary behavior are provided in Table S2.

		Time I	nterval (Ma)	
	Present δ^{13} C	Hoedjiespunt	Elandsfontein	Langebaanweg
	(‰ VPDB)	δ ¹³ C (‰ VPDB) (0.35 - 0.25 Ma)	δ ¹³ C (‰ VPDB) (~1.0 - 0.6 Ma)	δ ¹³ C (‰ VPDB) (~5 Ma) ^a
Time span from benthic foraminifera record (Ma)	n/a	0.35 - 0.25	1.0 - 0.6	5.7 - 3.33
$\delta^{13}C CO_2{}^b$	-8.0	-7.1	-7.1	-6.3
δ^{13} C of vegetation (‰ VPDB) ^c				
C ₃ (average)	-26.1	-25.3	-25.3	-24.5
C ₃ minimum	-31.7	-30.8	-30.8	-30.0
C ₃ maximum	-23.1	-22.2	-22.2	-21.4
C ₄ (average)	-11.0	-10.1	-10.1	-9.3
C ₄ minimum (mesic)	-10.0	-9.1	-9.1	-8.3
C ₄ maximum (xeric)	-14.0	-13.2	-13.2	-12.4
$\delta^{13}C_{enamel}$ (% VPDB) ^d				
C_3 diet (average)	-12.6	-11.5	-11.5	-10.7
C_3 diet minimum	-18.2	-17.1	-17.1	-16.4
C_3 diet maximum	-9.5	-8.4	-8.4	-7.6
C_4 diet (average)	2.9	3.8	3.8	4.6
C_4 diet minimum (mesic)	3.9	4.9	4.9	5.7
C ₄ diet maximum (xeric)	-0.2	0.8	0.8	1.6

Table S1: Estimated δ^{13} C values for atmospheric CO₂, vegetation and herbivore tooth enamel for the time intervals discussed in the text.

^a Paleo-CO₂ record is based on the mean benthic foraminifera record with two data points for the Langebaanweg time period that date to 5.7 Ma and 3.33 Ma (-6.19‰ and -6.35‰, respectively).

^b Foraminifera isotopic data are used to estimate the δ^{13} C value of atmospheric CO₂ (Tipple et al., 2010).

^c The $\varepsilon_{atmosphere-plant}$ values were calculated from the modern $\delta^{13}C$ values of CO_2 and the average, minimum and maximum $\delta^{13}C$ values of C_4 (Hattersley, 1982) and C_3 plants (Kohn, 2010). The $\varepsilon_{atmosphere-plant}$ values and the average reconstructed $\delta^{13}C$ values of CO_2 for each time period (Tipple et al., 2010) were used to estimate the $\delta^{13}C$ values of C_3 and C_4 vegetation in the past.

^d The δ^{13} C values of enamel for herbivores with a diet of C₃ and C₄ vegetation were calculated using an $\varepsilon_{plant-enamel}$ of +14.1‰ (Cerling et al., 1999) and the calculated plant δ^{13} C values at each time period denoted in this table.

									δ ¹³ C		δ ¹⁸ O		
									(% VPD	B) 1σ (a)			
Sample ID	Family	Tribe	Genus	Species	Locality	Collection, horizon ^b	Bay ^c	Behavior ^d		/ (700	vsmow)	n ^f Tooth element ⁸	Reference
-	Bovidae	Alcelaphini	Connochaetes/Alcelaphus	-	Hoedjiespunt	Hoedjiespunt 1, HOMS	-	Grazer	-9.2	- 31.2		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Alcelaphini	Connochaetes/Alcelaphus Connochaetes/Alcelaphus	-	Hoedjiespunt	Old Hoedjiespunt	-	Grazer	-9.8	- 31.9		Third molar when possible	Hare and Sealy, 2013
	Bovidae	Alcelaphini	Connochaetes/Alcelaphus		Hoedijespunt	Hoedijespunt 1, HOMS		Grazer	-10.0	- 29.5		Third molar when possible	Hare and Sealy 2013
	Bovidae	Alcelaphini	Connochaetes/Alcelaphus Connochaetes/Alcelaphus		Hoedjiespunt	Hoedjiespunt 1, HOMS	-	Grazer	-9.6	- 31.3		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Alcelaphini	Connochaetes/Alcelaphus	-	Hoedjiespunt	Hoedjiespunt 1, HOMS	-	Grazer	-8.1	- 31.0		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Alcelaphini	Connochaetes/Alcelaphus	-	Hoedjiespunt	Hoedjiespunt 1, HOMS	-	Grazer	-10.2	- 31.7		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Alcelaphini	Connochaetes/Alcelaphus	r -	Hoedjiespunt	Old Hoedjiespunt	-	Grazer	-10.3	- 29.7		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Alcelaphini	Connochaetes/Alcelaphus	-	Hoedjiespunt	Old Hoedjiespunt	-	Grazer	-9.0	- 30.4		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Alcelaphini	Connochaetes/Alcelaphus	-	Hoedjiespunt	Old Hoedjiespunt	-	Grazer	-9.0	- 29.7		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Alcelaphini	Connochaetes/Alcelaphus	-	Hoedjiespunt	Old Hoedjiespunt	-	Grazer	-10.2	- 30.1		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Alcelaphini	Connochaetes/Alcelaphus	· -	Hoedjiespunt	Old Hoedjiespunt	-	Grazer	-7.5	- 29.7		Third molar when possible	Hare and Sealy, 2013
	Bovidae	Alcelaphini	Damaliscus	pygargus pygargus	Hoedijespunt	Hoedjiespunt 1, HOMS	-	Grazer	-9.5	- 20.0		Third molar when possible	Hare and Sealy, 2013
	Bovidae	Alcelaphini	Damaliscus	nygargus pygargus	Hoedijespunt	Hoedijespunt 1, LCSS		Grazer	-13.1	- 34.3		Third molar when possible	Hare and Sealy 2013
-	Bovidae	Alcelaphini	Damaliscus	pygargus pygargus	Hoedijespunt	Hoedjiespunt 1, HOMS	-	Grazer	-10.4	- 33.3		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Antelopini	Antidorcas	australis	Hoedjiespunt	Hoedjiespunt 1, ROOF	-	Mixed feeder	-8.9	- 29.5		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Antelopini	Antidorcas	australis	Hoedjiespunt	Hoedjiespunt 1, LCSS	-	Mixed feeder	-11.1	- 28.8		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Antelopini	Antidorcas	australis	Hoedjiespunt	Hoedjiespunt 1, LCSS	-	Mixed feeder	-10.6	- 31.0		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Antelopini	Antidorcas	australis	Hoedjiespunt	Hoedjiespunt 1, HOMS	-	Mixed feeder	-8.5	- 33.5		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Antelopini	Antidorcas	australis	Hoedjiespunt	Hoedjiespunt 1, HOMS	-	Mixed feeder	-9.1	- 33.0		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Bovini	Bovini	-	Hoedjiespunt	Hoedjiespunt 1, HOMS	-	Grazer	-8.0	- 33.3		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Bovini	Bovini	-	Hoedjiespunt	Hoedjiespunt 1, HOMS	-	Grazer	-6.1	- 32.4		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Cephalophini	Sylvicapra	grimmia	Hoedjiespunt	Hoedjiespunt 1, LCSS	-	Browser	-10.1	- 31.1		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Cephalophini	Sylvicapra	grimmia	Hoedjiespunt	Hoedjiespunt 1, LCSS	-	Browser	-10.1	- 32.0		Third molar when possible	Hare and Sealy, 2013
	Bovidae	Neotragini	Raphicarus	grimmia -	Hoedijespunt	Hoedijespunt 1, EC35		Mixed feeder	-10.0	- 33.7		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Neotragini	Raphicerus	-	Hoedijespunt	Hoedijespunt 1, HOMS	-	Mixed feeder	-9.6	- 31.2		Third molar when possible	Hare and Sealy 2013
-	Bovidae	Neotragini	Raphicerus	-	Hoedijespunt	Old Hoedijespunt	-	Mixed feeder	-5.5	- 31.8		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Reduncini	Redunca	arundinum	Hoedjiespunt	Hoedjiespunt 1, LCSS	-	Grazer	-11.8	- 34.1		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Reduncini	Redunca	arundinum	Hoedjiespunt	Old Hoedjiespunt	-	Grazer	-8.6	- 31.3		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Hoedjiespunt	Hoedjiespunt 1, HOMS	-	Browser	-11.3	- 32.1		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Hoedjiespunt	Old Hoedjiespunt	-	Browser	-9.0	- 29.8		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Hoedjiespunt	Hoedjiespunt 1, GUFI	-	Browser	-10.3	- 30.9		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Hoedjiespunt	Hoedjiespunt 1, HOMS	-	Browser	-10.1	- 33.3		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Hoedjiespunt	Old Hoedjiespunt	-	Browser	-8.5	- 30.7		Third molar when possible	Hare and Sealy, 2013
-	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Hoedjiespunt	Old Hoedjiespunt	-	Browser	-11.1	- 30.0		Third molar when possible	Hare and Sealy, 2013
	Bovidae	Tragelaphini	Tragalaphus	orpy	Hoedijespunt	Hoedijespunt 1, ROOF		Mixed feeder	-7.8	- 323		Third molar when possible	Hare and Sealy, 2013
	Bovidae	riagenaphini	ragetaphus	oryx	riocujiespunt	noedjiespane 1, nowis		wixed recaer	-7.0	- 52.5		Third motal when possible	Hare and Seary, 2015
-	Bovidae	Alcelaphini	Connochaetes	gnou	Elandsfontein	EFTM	-	Grazer	-11.8	- 30.3		Second or third molar when possible	Luyt et al., 2000
EFTM 11281	Bovidae	Alcelaphini	Connochaetes	gnou	Elandsfontein	EFTM	-	Grazer	-12.0	- 37.6		M2 or M3	This study
EFTM 1656	Bovidae	Alcelaphini	Connochaetes	gnou	Elandstontein	EFIM	-	Grazer	-9.9	- 33.2		rm2	This study
EFTM 20858	Bovidae	Alcelaphini	Connochaetes	gnou	Elandstontein	EFIM	-	Grazer	-10.1	- 29.0		Im3 or ImN12	This study
EFTM 6177 ⁸	Dovidae	Alcelaphini	Connochaeles	gnou	Elandsfontein	EFIM	-	Grazer	-11.1	- 51.5		1113	This study
EFTM 8052	Bovidae	Alcelaphini	Connochaetes	gnou	Elandsfontein	EFIN	-	Grazer	-9.7	1.0 52.1	1.0 c	5 11115 rm2	This study
EFTM 8958A	Bovidae	Alcelaphini	Connochaetes	gnou	Elandsfontein	FFTM		Grazer	-10.6	- 32.7		rm3	This study
WCRP 1669	Bovidae	Alcelaphini	Megalotragus	-	Elandsfontein	WCRP	0609	Grazer	-10.5	- 341		Molar fragment	This study
WCRP 2168	Bovidae	Alcelaphini	Megalotragus	-	Elandsfontein	WCRP	0609	Grazer	-12.3	- 32.5		Molar fragment	This study
WCRP 1352	Bovidae	Acelaphini	genus indet.	-	Elandsfontein	WCRP	0209	Grazer	-7.6	- 36.1		Molar	This study
WCRP 17324	Bovidae	Acelaphini	genus indet.	-	Elandsfontein	WCRP	0609	Grazer	-8.4	- 31.6		Molar or premolar fragment	This study
WCRP 18010	Bovidae	Acelaphini	genus indet.	-	Elandsfontein	WCRP	0609	Grazer	-9.2	- 32.5		Molar or premolar fragment	This study
WCRP 32340	Bovidae	Acelaphini	genus indet.	-	Elandsfontein	WCRP	0313	Grazer	-11.4	- 31.5		Molar fragment	This study
WCRP 36612	Bovidae	Acelaphini	genus indet.	-	Elandsfontein	WCRP	0909	Grazer	-9.3	- 34.7		Molar or premolar fragment	This study
WCRP 3698	Bovidae	Acelaphini	genus indet.	-	Elandsfontein	WCRP	0209	Grazer	-9.6	- 32.4		Molar	This study
WCRP 46257	Bovidae	Acelaphini	genus indet.	-	Elandsfontein	WCRP	0313	Grazer	-11.8	- 30.7		Fragment	This study
WCRP /505	Bovidae	Acelaphini	genus indet.	-	Elandstontein	WCRP	0609	Grazer	-9.9	- 31.7		Second or third molar	This study
WCRP 9060	Bovidae	Aceiaphini	genus indet.	-	Elandsfontein	WCRP EETM	0610	Grazer	-10.6	- 32.3		Molar tragment	This study
EFTM 1694	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	EFTM		Grazer	-9.5	- 30.7		lm3	This study
EFTM 1746	Bovidae	Bovini	Syncerus	antiauus	Elandsfontein	EFTM	-	Grazer	-9.8	- 319		lm3	This study
EFTM 1755	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	EFTM	-	Grazer	-9.9	- 33.2		lm3	This study
EFTM 1759+1742	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	EFTM	-	Grazer	-10.9	- 32.5		lm3	This study
EFTM 5063	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	EFTM	-	Grazer	-9.7	- 33.2		lm3	This study
EFTM 5113 ^a	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	EFTM	-	Grazer	-9.4	0.5 34.9	0.5 1	2 lm3	This study
EFTM IZ 7892	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	EFTM	-	Grazer	-10.21	- 32.9		lm3	This study
WCRP 32064	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	WCRP	0313	Grazer	-10.2	- 34.5		Premolar or first molar	This study
WCRP 32119	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	WCRP	0313	Grazer	-10.1	- 34.6		Third molar	This study
WCRP 32265	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	WCRP	0313	Grazer	-9.6	- 35.1		Molar or premolar fragment	This study

									δ ¹³ C.	δ ¹⁸ Ο.			
									(% VPD	$(B) 1\sigma$ (a) VENC	mamer 1σ		
Sample ID	Family	Tribe	Genus	Species	Locality	Collection, horizon ^b	Bay ^c	Behavior ^d		/ (‰ VSMC	nf nf	Tooth element ^g	Reference
WCRP 32289	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	WCRP	0313	Grazer	-9.5	- 34.2		Molar fragment	This study
WCRP 32386	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	WCRP	0313	Grazer	-9.9	- 34.2		Molar	This study This study
WCRP 34441 WCRP 46245	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	WCRP	0710	Grazer	-10.0	- 35.0		Molar fragment	This study
WCRP 46251	Bovidae	Bovini	Syncerus	antiauus	Elandsfontein	WCRP	0313	Grazer	-10.5	- 34.9		Fragment	This study
WCRP 46256	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	WCRP	0313	Grazer	-12.2	- 30.3		Fragment	This study
WCRP 9380	Bovidae	Bovini	Syncerus	antiquus	Elandsfontein	WCRP	0309	Grazer	-11.7	0.0 33.6	0.5 2	Molar fragment	This study
-	Bovidae	Hippotragini	Hippotragus	gigas	Elandsfontein	EFTM		Mixed feeder	-10.8	- 28.6		Second or third molar when possible	Luyt et al., 2000
-	Bovidae	Hippotragini	Hippotragus	gigas	Elandsfontein	EFTM	-	Mixed feeder	-8.4	- 31.5		Second or third molar when possible	Luyt et al., 2000
WCRP 1600 WCPP 5397	Bovidae	Hippotragini	Hippotragus	gigas	Elandsfontein	WCRP	0609	Mixed feeder	-10.7	- 32.7		mis Molar fragment	This study
WCRP 5656	Bovidae	Neotragini	Ranhicerus	melanotis	Elandsfontein	WCRP	0609	Browser	-13.3	05 33 1	054	rml	This study
WCRP 5675	Bovidae	Neotragini	Raphicerus	melanotis	Elandsfontein	WCRP	0609	Browser	-11.2	2.2 32.0	1.3 2	rml	This study
EFTM 1575	Bovidae	Reduncini	Redunca	arundinum	Elandsfontein	EFTM	-	Grazer	-8.9	0.5 35.1	1.2 2	lm3	This study
EFTM 1587	Bovidae	Reduncini	Redunca	arundinum	Elandsfontein	EFTM		Grazer	-8.2	- 34.7		lm3	This study
EFTM 2834	Bovidae	Reduncini	Redunca	arundinum	Elandsfontein	EFTM	-	Grazer	-9.8	- 31.3		lm3	This study
EFTM 3514	Bovidae	Reduncini	Redunca	arundinum	Elandsfontein	EFTM		Grazer	-9.9	- 36.9		Molar fragment	This study
EFTM 6700	Bovidae	Reduncini	Redunca	arundinum	Elandsfontein	EFTM	-	Grazer	-10.6	- 30.7		rm3	This study
EF1M 8568	Bovidae	Reduncini	Redunca	arundinum	Elandsfontein	EFIM	-	Grazer	-10.0	- 35.9		Im2 and Im3	This study
EFTM 1585	Bovidae	Reduncini	Redunca	arundinum	Elandsfontein	FFTM		Grazer	-10.3	- 29.8		Molar fragment	This study
WCRP 8399	Bovidae	Reduncini	Redunca	arundinum	Elandsfontein	WCRP	0909	Grazer	-9.4	- 30.9		RM3	This study
EFTM 2296	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Elandsfontein	EFTM	-	Browser	-11.4	- 34.8		rm3	This study
EFTM 2719	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Elandsfontein	EFTM		Browser	-11.9	- 35.1		rm3	This study
EFTM 2728	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Elandsfontein	EFTM	-	Browser	-12.0	- 36.7		rm3	This study
EFTM 2733	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Elandsfontein	EFTM		Browser	-11.9	- 35.8		rm3	This study
EFTM 2736 ^a	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Elandsfontein	EFTM	-	Browser	-11.1	1.4 32.2	2.8 2	rm3	This study
EFTM 2738	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Elandsfontein	EFTM	-	Browser	-11.6	0.3 34.8	0.8 2	rm3	This study
EF1M 82/3 WCPP 5042	Bovidae	Tragelaphini	Tragelaphus	strepsiceros	Elandsfontein	EFIM	-	Browser	-12.7	0.4 32.9	1.4 2	rm3 Second moler	This study
WCRP 13288	Bovidae	Bovidae indet	-	ory.x	Elandsfontein	WCRP	0209	-	-9.0	- 33.7		Fragment	This study
WCRP 13461	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-8.9	- 34.6		Fragment	This study
WCRP 13642	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.0	- 32.1		Fragment	This study
WCRP 1467	Bovidae	Bovidae indet.		-	Elandsfontein	WCRP	0509	-	-9.0	- 33.5		Fragment	This study
WCRP 1468	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0509	-	-10.6	- 36.2		Lower Molar	This study
WCRP 1654	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.6	- 35.0		Fragment	This study
WCRP 17201 ^a	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.0	0.1 29.8	0.3 2	Molar or premolar fragment	This study
WCRP 18432	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.6	- 31.5		Fragment	This study
WCRP 103/0	Bovidae	Bovidae indet.			Elandsfontein	WCRP	0609	-	-10.8	- 32.0		Molar	This study
WCRP 19429	Bovidae	Bovidae indet			Elandsfontein	WCRP	0209	-	-9.8	- 32.6		Fragment	This study
WCRP 20443	Bovidae	Bovidae indet.		-	Elandsfontein	WCRP	0710	-	-10.3	- 34.0		rm3	This study
WCRP 2105	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.1	- 32.3		Fragment	This study
WCRP 2158	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-10.1	- 32.5		Fragment	This study
WCRP 2189	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-10.8	- 34.7		Molar	This study
WCRP 23212	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0209	-	-10.1	- 30.5		Fragment	This study
WCRP 2395	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.2	- 37.1		Fragment Third malor	This study
WCRP 2009 WCRP 27624	Bovidae	Bovidae indet.			Elandsfontein	WCRP	0110		-8.7	- 20.8		Fragment	This study
WCRP 2891	Bovidae	Bovidae indet.			Elandsfontein	WCRP	0609	-	-8.2	- 33.7		Premolar or incisor	This study
WCRP 29026	Bovidae	Bovidae indet.		-	Elandsfontein	WCRP	0910	-	-9.1	- 29.5		Molar	This study
WCRP 32213	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0313	-	-10.1	- 33.9		Molar	This study
WCRP 32391	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0313	-	-11.9	- 34.7		Fragment	This study
WCRP 34057	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0110	-	-9.1	- 35.4		Fragment	This study
WCRP 34690	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609 or 0710	-	-9.7	- 34.7		Molar	This study
WCRP 34695	Bovidae	Bovidae indet.	-	-	Elandstontein	WCRP	0609 or 0/10	-	-8.6	- 33.8		Molar	This study
WCRP 39321 WCPP 20222	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0112	-	-7.5	0.8 34.4	0.1 2	Fragment	This study
WCRP 46258	Bovidae	Bovidae indet			Elandsfontein	WCRP	0313		-12.2	- 31.4		Fragment	This study
WCRP 46259	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0313	-	-11.0	- 30.6		Fragment	This study
WCRP 46260	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0313	-	-9.8	- 32.2		Fragment	This study
WCRP 5266	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.0	- 36.0		Fragment	This study
WCRP 5565	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-7.6	- 33.2		Fragment	This study
WCRP 5636	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-10.4	- 35.5		Fisrt molar	This study
WCRP 5654	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.4	- 32.3		rm3 Malar	This study
WCRP 5650	Bovidae	Bovidae indet.			Elandsfontein	WCRP	0609	-	-0.9 _7.6	- 32.0		Second molar	This study
WCRP 5660	Bovidae	Bovidae indet	-		Elandsfontein	WCRP	0609	-	-7.0	- 35.0		Fisrt molar	This study
WCRP 5823	Bovidae	Bovidae indet.	-		Elandsfontein	WCRP	0609	-	-10.3	- 35.4		M2 or M3	This study
WCRP 5825	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-10.6	- 35.2		Molar	This study

									δ ¹³ C	δ ¹⁸ Ω			
									(% VPD)	namel 000 B) 1σ ··· ······	enamel		
Sample ID	Family	Tribe	Genus	Species	Locality	Collection, horizon ^b	Bay ^c	Behavior ^d	(/00 11 D)	b) 10 (% VSM	OW) ^e 10 n ^f	Tooth element ⁸	Reference
WCRP 5843 ^a	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-11.0	0.2 31.9	0.5 2	Fragment	This study
WCRP 6185	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0309	-	-7.8	- 33.9		Molar fragment	This study
WCRP 6243	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0309	-	-9.3	- 33.2		Molar fragment	This study
WCRP 6695	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0610	-	-10.1	- 34.9		Molar	This study
WCRP 6703	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0610	-	-11.7	- 32.3		Premolar Premolar or first molar	This study
WCRP 6802	Bovidae	Bovidae indet		-	Elandsfontein	WCRP	0610		-7.8	- 30.8		Molar	This study
WCRP 6806	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0610	-	-9.5	- 35.6		Second molar	This study
WCRP 6975 ^a	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0109	-	-9.5	0.2 33.6	0.2 2	Second molar	This study
WCRP 7169	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0109	-	-7.5	0.2 27.7	0.5 2	Fragment	This study
WCRP 7589	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0109	-	-10.8	- 30.1		Molar	This study
WCRP 7611	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0109	-	-9.0	- 30.7		Molar or premolar fragment	This study
WCRP 7639	Bovidae	Bovidae indet.	-	-	Elandstontein	WCRP	0109	-	-9.5	- 30.5		Molar	This study
WCRP /832	Bovidae	Bovidae indet.	-	-	Elandstontein	WCRP	0109	-	-11.9	- 32.9		Molar	This study
WCRP 9045 WCRP 9050	Bovidae	Bovidae indet.	-		Elandsfontein	WCRP	0609	1	-10.1	1.1 35.1	0.3 2	Fragment Molar fragment	This study
WCRP 9053	Bovidae	Bovidae indet			Elandsfontein	WCRP	West Site		-8.3	- 32.9		Fragment	This study
WCRP 9079	Bovidae	Bovidae indet.			Elandsfontein	WCRP	0510		-8.0	- 32.0		Molar	This study
WCRP 9085	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0610	-	-9.0	- 32.9		Molar	This study
WCRP 9377	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0809	-	-10.4	- 32.4		Fragment	This study
WCRP 9378	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	ND	-	-7.9	- 34.9		Third molar	This study
WCRP 9386	Bovidae	Bovidae indet.	-	-	Elandsfontein	WCRP	0609	-	-8.8	- 33.5		Third molar	This study
WCRP 9944 WCPP 22222	Corcopithogidae	Bovidae indet.	- Tharonithaaus	-	Elandsfontein	WCRP	0212	-	-11.0	- 34./		molar tragment	This study
WCRP 17199	Elephantidae	- Elenhantidae indet	-		Elandsfontein	WCRP	0609	Grazer	-85	- 30.8	1.9 2	Fragment	This study
-	Equidae	-	Equus	capensis	Elandsfontein	EFTM	-	Grazer	-10.3	- 31.2		Second or third molar when possible	Luyt et al., 2000
-	Equidae	-	Equus	capensis	Elandsfontein	EFTM	-	Grazer	-9.9	- 29.4		Second or third molar when possible	Luyt et al., 2000
-	Equidae	-	Equus	capensis	Elandsfontein	EFTM	-	Grazer	-9.4	- 32.6		Second or third molar when possible	Luyt et al., 2000
EFTM 2619	Equidae	-	Equus	capensis	Elandsfontein	EFTM	-	Grazer	-9.7	- 31.6		rm3	This study
EFTM 13873 ^a	Equidae	-	Equus	capensis	Elandsfontein	EFTM	-	Grazer	-9.9	0.6 33.1	0.6 13	rm3	This study
EFTM 16660	Equidae	-	Equus	capensis	Elandsfontein	EFIM	-	Grazer	-9.2	- 32.0		rm3	This study
EFTM 1952 EFTM 2112	Equidae		Equus	capensis	Elandsfontein	EFIM		Grazer	-11.2	- 33.0		rm3	This study
EFTM 5065	Equidae	-	Equus	capensis	Elandsfontein	EFTM	-	Grazer	-9.5	- 33.1		rm3	This study This study
EFTM 6727 ^a	Equidae		Eauus	capensis	Elandsfontein	EFTM	-	Grazer	-8.5	0 4 32 0	012	rm3	This study
WCRP 2103	Equidae	-	Equus	capensis	Elandsfontein	WCRP	0609	Grazer	-10.1	- 32.3		lm3	This study
WCRP 6242	Equidae		Equus	capensis	Elandsfontein	WCRP	0309	Grazer	-10.0	- 32.4		RM3	This study
WCRP 9384	Equidae	-	Equus	capensis	Elandsfontein	WCRP	0609	Grazer	-9.8	0.3 32.6	0.3 3	Fragment	This study
WCRP 1007	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	0109	-	-9.2	- 32.9		Fragment	This study
WCRP 12965	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	0609	-	-8.3	- 32.7		Fragment	This study This study
WCRP 17333	Equidae	Equidae indet			Elandsfontein	WCRP	0609		-9.8	- 33.7		Fragment	This study
WCRP 2049	Equidae	Equidae indet.			Elandsfontein	WCRP	0609		-10.4	- 33.3		Molar	This study
WCRP 2101	Equidae	Equidae indet.			Elandsfontein	WCRP	0609		-10.2	- 33.3		Molar	This study
WCRP 2102	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	0609	-	-10.5	- 32.0		Molar	This study
WCRP 2106	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.3	- 33.6		Fragment	This study
WCRP 2110	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	0609	-	-8.4	- 31.1		Molar	This study
WCRP 2182	Equidae	Equidae indet.	-	-	Elandstontein	WCRP	0609	-	-10.5	- 34.2		Fragment	This study
WCRP 29225 WCRP 36806	Equidae	Equidae indet.	-		Elandsfontein	WCRP	0110	1	-11.4	- 33.5		Fragment	This study
WCRP 3815	Equidae	Equidae indet	-	-	Elandsfontein	WCRP	0209		-9.0	- 32.6		Fragment	This study
WCRP 5056	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.7	- 33.5		Fragment	This study
WCRP 9041 ^a	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	ND	-	-9.9	0.5 34.0	0.3 2	Fragment	This study
WCRP 9045	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	0610	-	-9.8	- 32.4		Molar	This study
WCRP 9054	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	West Site	-	-10.3	- 33.5		Molar	This study
WCRP 9140	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	0609	-	-10.1	- 32.6		Molar	This study
WCRP 9357 ^a	Equidae	Equidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.5	0.1 31.4	0.2 2	Fragment	This study
-	Giraffidae	-	Sivatherium	maurusium	Elandsfontein	EFIM	-	Browser	-11.2	- 31.3		Second or third molar when possible	Luyt et al., 2000
-	Giraffidae	-	Sivatherium	maurusium	Elandsfontein	EFTM	-	Browser	-10.8	- 29.7		Second or third molar when possible	Luvt et al. 2000
EFTM 4028	Giraffidae	-	Sivatherium	maurusium	Elandsfontein	EFTM	-	Browser	-10.8	- 35.0		Second molar?	This study
EFTM 4031	Giraffidae	-	Sivatherium	maurusium	Elandsfontein	EFTM	-	Browser	-11.7	0.5 33.5	0.6 2	lm3	This study
WCRP 8031	Giraffidae	-	Sivatherium	maurusium	Elandsfontein	WCRP	0709	Browser	-10.1	- 32.8		rm3	This study
WCRP 8682	Giraffidae	Giraffidae indet.	-	-	Elandsfontein	WCRP	1009	-	-9.1	- 34.4		Fragment	This study
-	Hippopotamidae	-	Hippopotamus	amphibius	Elandsfontein	EFIM	-	Semi-aquatic	-12.8	- 27.8		Second or third molar when possible	Luyt et al., 2000
- FFTM 4030	Hippopotamidae	-	ruppopotamus Hinnonotamus	amphibius	Elandsfontein	FFTM		Semi-aquatic	-11.5	- 27.7		Molar fragment	Luyi et al., 2000 This study
EFTM 4042	Hippopotamidae	-	Hippopotamus	amphibius	Elandsfontein	EFTM		Semi-aquatic	-13.0	- 31.8		Tusk fragment	This study
EFTM 4088	Hippopotamidae	-	Hippopotamus	amphibius	Elandsfontein	EFTM	-	Semi-aquatic	-12.1	- 29.3		Molar	This study

									δ ¹³ C		¹⁸ Oi		
									(% VPDB	3) 1σ (α/ τ/			
Sample ID	Family	Tribe	Genus	Species	Locality	Collection, horizon ^b	Bay ^c	Behavior ^d		(% V S	smow) n ^f	Tooth element ⁸	Reference
EFTM 5015	Hippopotamidae	-	Hippopotamus	amphibius	Elandsfontein	EFTM	-	Semi-aquatic	-13.3	- 30.5		Molar	This study
EFTM 66908	Hippopotamidae	-	Hippopotamus	amphibius	Elandsfontein	EFTM	-	Semi-aquatic	-11.6	- 28.9		Tusk fragment	This study
EFTM M5I21094	Hippopotamidae	-	Hippopotamus	amphibius	Elandsfontein	EFTM	-	Semi-aquatic	-13.3	- 28.7		Molar fragment	This study
WCRP 49364	Hippopotamidae	-	Hippopotamus	amphibius	Elandsfontein	WCRP	0909	Semi-aquatic	-10.0	1.6 31.7	1.6 2	Canine	This study
EFTM 3410	Rhinocerotidae	-	Ceratotherium	simum	Elandsfontein	EFIM	-	Grazer	-10.2	- 32.3		Molar	This study
EFTM 9610D	Rhinocerotidae	-	Ceratotherium	simum	Elandsfontein	EFIN	-	Grazer	-11.0	- 33.2		Fragment	This study
EFTM 93998	Rhinocerotidae		Ceratotherium	simum	Elandsfontein	FFTM	-	Grazer	-10.4	- 31.3		Molar	This study
EFTM 16617	Rhinocerotidae		Diceros	hicornis	Elandsfontein	EFTM	-	Browser	-11.2	- 31.7		RM3	This study
EFTM 20939	Rhinocerotidae	-	Diceros	bicornis	Elandsfontein	EFTM	-	Browser	-11.5	- 32.2		Fragment	This study
EFTM 20982	Rhinocerotidae	-	Diceros	bicornis	Elandsfontein	EFTM	-	Browser	-11.4	- 33.0		Molar fragment	This study
EFTM 8700K ^a	Rhinocerotidae		Diceros	bicornis	Elandsfontein	EFTM	-	Browser	-11.8	0.1 31.1	0.3 2	Molar	This study
-	Rhinocerotidae	Rhinocerotidae indet.	-	-	Elandsfontein	EFTM	-	-	-10.8	- 27.6		Second or third molar when possible	Luyt et al., 2000
-	Rhinocerotidae	Rhinocerotidae indet.	-	-	Elandsfontein	EFTM	-	-	-11.1	- 28.2		Second or third molar when possible	Luyt et al., 2000
0313 Rhino-Lot 2744	Rhinocerotidae	Rhinocerotidae indet.	-	-	Elandsfontein	WCRP	0313	-	-12.4	0.3 32.8	0.7 3	Premolar	This study
WCRP 18531	Rhinocerotidae	Rhinocerotidae indet.	-	-	Elandsfontein	WCRP	0609	-	-9.2	- 32.0		Fragment	This study
WCRP 9055	Rhinocerotidae	Rhinocerotidae indet.	-	-	Elandsfontein	WCRP	West Site	-	-10.6	- 33.6		Fragment	This study
-	Suidae	-	Kolpochoerus	paiceae	Elandsfontein	EFTM	-	Grazer	-8.7	- 29.8		Second or third molar when possible	Luyt et al., 2000
-	Suidae	-	Kolpochoerus	paiceae	Elandsfontein	EFTM	-	Grazer	-9.8	- 26.2		Second or third molar when possible	Luyt et al., 2000
-	Suidae	-	Kolpochoerus	paiceae	Elandsfontein	EFIM	-	Grazer	-12.0	- 23.7		Second or third molar when possible	Luyt et al., 2000
WCRP 12156	Suidae	-	Kolpochoerus	paiceae	Elandstontein	WCRP	0209	Grazer	-9.0	- 32.3		rm3	This study
WCRP 12284 WCPP 6429	Suidae	-	Kolpochoerus	paiceae	Elandsfontein	WCRP	0209	Grazer	-8.2	- 32.5		Im3	This study
WCKF 0458	Suidae	-	Matridiaghageur	andrawsi	Elandsfontein	EETM	0010	Grazer	-11.1	- 51.4		IIII5 Second or third molar when possible	Lund at al. 2000
	Suidae		Metridiochoerus	andrewsi	Elandsfontein	FFTM	-	Grazer	-9.4	- 24.0		Second or third molar when possible	Luvt et al. 2000
	Guidade		inco nuccioci us	unurensi	Endloromeni			Graner	2.1	21.9		Second of and motal when possible	Eujt et u., 2000
-	Bovidae	Alcelaphini	Damalacra sp.		Langebaanweg	Varswater Formation, PPM, Bed 3aN	_	Grazer to Browser	-11.4	- 26.3		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Bovidae	Alcelaphini	Damalacra sp.	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Grazer to Browser	-12.3	- 26.2		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Bovidae	Alcelaphini	Damalacra sp.	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Grazer to Browser	-9.3	- 28.5		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Bovidae	Alcelaphini	Damalacra sp.	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Grazer to Browser	-10.5	- 29.3		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Bovidae	Alcelaphini	Damalacra sp.	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Grazer to Browser	-10.3	- 26.6		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Bovidae	Alcelaphini	Damalacra sp.	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Grazer to Browser	-10.3	- 29.6		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Bovidae	Alcelaphini	Damalacra sp.	-	Langebaanweg	Varswater Formation, PPM	-	Grazer to Browser	-11.5	- 26.3		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Bovidae	Reduncini	Kobus sp.	-	Langebaanweg	Varswater Formation, PPM	-	-	-10.7	- 26.5		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Bovidae	Reduncini	Kobus sp.	-	Langebaanweg	Varswater Formation, PPM	-	-	-10.7	- 29.5		Molar fragments when possible	Franz-Odendaal et al., 2002
LBW13G-001	Bovidae	Bovidae indet.	-	-	Langebaanweg	Varswater Formation, PPM	-	-	-10.0	- 34.6		Molar	This study
LBW13G-002	Bovidae	Bovidae indet.	-	-	Langebaanweg	Varswater Formation, PPM	-	-	-10.4	- 32.8		Molar	This study
-	Equidae	-	Hipparion cj.	baarai	Langebaanweg	varswater Formation, PPM, Bed 3aN	-	Grazer	-11.7	- 25.1		Molar tragments when possible	Franz-Odendaai et al., 2002
-	Equidae	-	Hipparion cf.	baardi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Grazer	-12.9	- 25.1		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Equidae	-	Hipparion cf.	baardi	Langebaanweg	Varswater Formation, PPM	-	Grazer	-11.0	- 26.1		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Equidae	-	Hipparion cf.	baarai	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Grazer	-11.2	- 28.6		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Equidae	-	Hipparion cj.	baarai	Langebaanweg	Varswater Formation, PPM, Bed Salv	-	Grazer	-10.7	- 29.6		Molar fragments when possible	Franz-Odendaal et al., 2002
- I BW13G-003	Equidae	- Fauidae indet	-	Juurui	Langebaanweg	Varswater Formation, PPM	-	Glazei	-8.9	- 30.4		Molar	This study
LBW13G-004	Equidae	Equidae indet			Langebaanweg	Varswater Formation PPM			-8.8	- 31.2		Incisor	This study
-	Giraffidae	-	Sivatherium	hendevi	Langebaanweg	Varswater Formation, PPM Bed 3aN	_	Mixed feeder	-12.0	- 27.7		Molar fragments when possible	Franz-Odendaal et al 2002
-	Giraffidae		Sivatherium	hendevi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-13.5	- 24.8		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendevi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-13.2	- 28.5		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-13.6	- 26.8		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae		Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-10.5	- 29.6		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM	-	Mixed feeder	-10.4	- 28.8		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae		Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-10.7	- 27.9		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-10.5	- 27.9		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-10.7	- 30.2		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-10.3	- 27.2		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Stvatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-11.1	- 27.5		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giramdae	-	Sivatherium	nendeyi hərri	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-9.9	- 29.0		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	handayi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-11.1	- 30.6		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatharium	handavi	Langebaanweg	Varswater Formation PPM Ded 2aN		Mixed feeder	-12.0	- 27.7		Molar fragments when possible	Franz-Odendaal et al., 2002
	Giraffidae		Sivatherium	hendevi	Langebaanweg	Varswater Formation PPM Red 3aN	-	Mixed feeder	-11.9	- 27.7		Molar fragments when possible	Franz-Odendaal et al. 2002
	Giraffidae	-	Sivatherium	hendevi	Langebaanweg	Varswater Formation, PPM Bed 3aN	-	Mixed feeder	-12.1	- 26.8		Molar fragments when possible	Franz-Odendaal et al., 2002
	Giraffidae		Sivatherium	hendevi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-10.3	- 27.0		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-12.5	- 29.7		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-10.4	- 27.9		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-10.8	- 28.5		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-11.1	- 27.3		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-12.3	- 29.7		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-11.1	- 27.0		Molar fragments when possible	Franz-Odendaal et al., 2002
-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-13.5	- 27.4		Molar fragments when possible	Franz-Odendaal et al., 2002

Sample IDFinityTriceGenusSpeciesLangebaanwegVarswater Formation, PPM, Bed 3ahBay ⁶ RehovindCiteNonMoler fragments when possibleFranz-Odendaal et al, 2002LBW 13G-009GiraffidaeGiraffidae indetLangebaanwegVarswater Formation, PPM, Bed 3ahMixed feeder-12.0-34.0Molar fragments when possibleFranz-Odendaal et al, 2002LBW 13G-010GiraffidaeGiraffidae indetLangebaanwegVarswater Formation, PPM9.2-30.3Molar fragments when possibleFranz-Odendaal et al, 2002LBW 13G-010GiraffidaeGiraffidae indetLangebaanwegVarswater Formation, PPM, Bed 3ahSemi-aquatic-10.9-2-Molar fragments when possibleFranz-Odendaal et al, 2002-HippopotamidaeHippopotamidae indetLangebaanwegVarswater Formation, PPM, Bed 3ahSemi-aquatic-10.6-2.00-Molar fragments when possibleFranz-Odendaal et al, 2002-HippopotamidaeHippopotamidae indetLangebaanwegVarswater Formation, PPM, Bed 3ahSemi-aquatic-11.6-2.00-Molar fragments when possibleFranz-Odendaal et al, 2002-HippopotamidaeHippopotamidae indetLangebaanwegVarswater Formation, PPM, Bed 3ahSemi-aquatic-11.6-2.02Molar fra										δ ¹³ C	δ ¹⁸ Ο.			
Sample IDFamilyTribeGenusSpecieLocalityCollection, horizon ⁶ Bay ⁶ Behavior ⁴ (N + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1										(% VPDB	nei ε οι	. 1σ		
Giraffidae Giraffidae Sivatherium hendeyi Langebaanveg Varswater Formation, PPM, Bed 3aN Mixed feeder -13.0 - Molar fragments when possible Franz-Odendaal et al, 2002 LBW13G-010 Giraffidae Giraffidae indet. - - Langebaanveg Varswater Formation, PPM - - - 9.3 3.3 - Molar This study LBW13G-011 Giraffidae indet. - - Langebaanveg Varswater Formation, PPM - - - 9.2 3.33 - Molar Molar This study LBW13G-011 Giraffidae indet. - - Langebaanveg Varswater Formation, PPM, Bed 3aN Semi-aquatic -10.9 27.0 - Molar fragments when possible Franz-Odendaal et al, 2002 - Hippopotamidae indet. - - Langebaanveg Varswater Formation, PPM, Bed 3aN Semi-aquatic -11.6 26.0 - Molar fragments when possible Franz-Odendaal et al, 2002 - Hippopotamidae indet. - - Langebaanveg Varswater Formation, PPM, Bed 3aN Semi-aquatic -11.6 24.2 <	Sample ID	Family	Tribe	Genus	Species	Locality	Collection, horizon ^b	Bay ^c	Behavior ^d	(/// // //	, 10 (‰ VSMC	JW) ^c 10 n ^f	Tooth element ⁸	Reference
LBW 13G-009Giraffidae indet.Giraffidae indetLangebaanvegVarswater Formation, PPM12.0-88/0MolarThis studyLBW 13G-010Giraffidae indet.Giraffidae indetLangebaanvegVarswater Formation, PPM9.2-3.03MolarMolarThis study-Hippopotanidae indetLangebaanvegVarswater Formation, PPM, Bed 3aN-Semi-aquaticMolar fagments when possibleFnarz-Odendaal e1, 2002-Hippopotanidae indetLangebaanvegVarswater Formation, PPM, Bed 3aNSemi-aquatic0.001 fagments when possibleFnarz-Odendaal e1, 2002-Hippopotanidae indetLangebaanvegVarswater Formation, PPM, Bed 3aNSemi-aquatic-0.001 fagments when possibleFnarz-Odendaal e1, 2002-Hippopotanidae indetLangebaanvegVarswater Formation, PPM, Bed 3aNSemi-aquatic-11.6-2.02Molar fagments when possibleFnarz-Odendaal e1, 2002-Hippopotanidae indetLangebaanvegVarswater Formation, PPM, Bed 3aNSemi-aquatic-12.0-2.02Molar fagments when possibleFnarz-Odendaal e1, 2002-Hippopotanidae indetLangebaanvegVarswater Formation, PPM, Bed 3aNSemi-aquatic-12.02.32 <td>-</td> <td>Giraffidae</td> <td>-</td> <td>Sivatherium</td> <td>hendeyi</td> <td>Langebaanweg</td> <td>Varswater Formation, PPM, Bed 3aN</td> <td>-</td> <td>Mixed feeder</td> <td>-13.0</td> <td>- 25.4</td> <td></td> <td>Molar fragments when possible</td> <td>Franz-Odendaal et al., 2002</td>	-	Giraffidae	-	Sivatherium	hendeyi	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Mixed feeder	-13.0	- 25.4		Molar fragments when possible	Franz-Odendaal et al., 2002
LBW 13G-010 Giraffidae Giraffidae indet. - - - -9.3 - 9.33 - - Frament This study LBW 13G-011 Giraffidae indet. - - Langebaamve Varswater Formation, PPM, Bed 3AN - Semi-aquatic - 9.2 - Molar framents when possible This study - Hippoptamidae indet. - - Langebaamve Varswater Formation, PPM, Bed 3AN - Semi-aquatic - 9.2 - Molar framents when possible Fram-20dendal e1, 2002 - Hippoptamidae indet. - - Langebaamve Varswater Formation, PPM, Bed 3AN - Semi-aquatic -13.3 - 2.32 - Molar framents when possible Fram-20dendal e1, 2002 - Hippoptamidae indet. - - Langebaamve Varswater Formation, PPM, Bed 3AN - Semi-aquatic -12.7 - 2.32 - - Molar framents when possible Fram-20dendal e1, 2002 - Hippoptamidae indet. - - Langebaamve Varswater Formation, PPM, Bed 3AN - Semi-aquatic -14.9 2.42 - - Molar f	LBW13G-009	Giraffidae	Giraffidae indet.	-	-	Langebaanweg	Varswater Formation, PPM	-	-	-12.0	- 34.0		Molar	This study
LBW13G-011GiraffidaeGiraffidae indetLangebaanveVarswater Formation, PPM9-2-9.3MolarThis study-Hippopotamidae indetLangebaanveVarswater Formation, PPM. Bed 3ASemi-aquatic-10.9Molar fragments when possibleFraz-Odendaal et al, 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3ASemi-aquatic-10.9Molar fragments when possibleFraz-Odendaal et al, 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3ASemi-aquatic-11.6Molar fragments when possibleFraz-Odendaal et al, 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3ASemi-aquatic-11.6Molar fragments when possibleFraz-Odendaal et al, 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3ASemi-aquatic-11.6-24.2Molar fragments when possibleFraz-Odendaal et al, 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3ASemi-aquatic-11.6-24.2Molar fragments when possibleFraz-Odendaal et al, 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3ASemi-aquatic-11.6-24.4Molar fragments when possibleFraz-Odenda	LBW13G-010	Giraffidae	Giraffidae indet.	-	-	Langebaanweg	Varswater Formation, PPM	-	-	-9.3	- 33.3		Fragment	This study
-Hippoptamidae indetLangebaarweVarswater Formation, PPM, Bed 3aN -Semi-aquatic-10.9-27.0Molar fagments when possibleFranz-Odendad at 1, 2002-Hippoptamidae indetLangebaarweVarswater Formation, PPM, Bed 3aN -Semi-aquatic-11.3-2.32Molar fagments when possibleFranz-Odendad at 1, 2002-Hippoptamidae indetLangebaarweVarswater Formation, PPM, Bed 3aN -Semi-aquatic-11.6-2.02Molar fagments when possibleFranz-Odendad at 1, 2002-Hippoptamidae indetLangebaarweVarswater Formation, PPM, Bed 3aN -Semi-aquatic-12.7-2.32Molar fagments when possibleFranz-Odendaal et 1, 2002-Hippoptamidae indetLangebaarweVarswater Formation, PPM, Bed 3aN -Semi-aquatic-12.7-2.32Molar fagments when possibleFranz-Odendaal et 1, 2002-Hippoptamidae indetLangebaarweVarswater Formation, PPM, Bed 3aN -Semi-aquatic-12.0-2.32Molar fagments when possibleFranz-Odendaal et 1, 2002-Hippoptamidae indetLangebaarweVarswater Formation, PPM, Bed 3aN -Semi-aquatic-12.02.32Molar fagments when possibleFranz-Odendaal et 1, 2002-Hippoptamidae indetLangebaarweVarswater Formation, PPM, Bed 3aN -Semi-aqu	LBW13G-011	Giraffidae	Giraffidae indet.	-	-	Langebaanweg	Varswater Formation, PPM	-	-	-9.2	- 30.3		Molar	This study
-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-aquatic-1.3.3-2.3.2-Molar fragments when possibleFranz-Odendaal et al. 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-aquatic-11.6-2.60Molar fragments when possibleFranz-Odendaal et al. 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-aquatic-11.6-2.63Molar fragments when possibleFranz-Odendaal et al. 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-aquatic-14.9-2.42Molar fragments when possibleFranz-Odendaal et al. 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-aquatic-14.9-2.42Molar fragments when possibleFranz-Odendaal et al. 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-aquatic-11.8-2.42Molar fragments when possibleFranz-Odendaal et al. 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-aquatic-9.4-2.44-Molar fragments when possibleFranz-Odendaal et al. 2002-Hippopotamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -<	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-10.9	- 27.0		Molar fragments when possible	Franz-Odendaal et al., 2002
-Hippoptamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-squatic-11.6-2.6.0Molar fragments when possibleFraz-Odendaal et al., 2002-Hippoptamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-squatic-12.7Molar fragments when possibleFraz-Odendaal et al., 2002-Hippoptamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-squatic-12.7Molar fragments when possibleFraz-Odendaal et al., 2002-Hippoptamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-squatic-12.7-2.32Molar fragments when possibleFraz-Odendaal et al., 2002-Hippoptamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-squatic-12.0-2.42Molar fragments when possibleFraz-Odendaal et al., 2002-Hippoptamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-squatic-11.8-2.42Molar fragments when possibleFraz-Odendaal et al., 2002-Hippoptamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-squatic-11.8-2.42Molar fragments when possibleFraz-Odendaal et al., 2002-Hippoptamidae indetLangebaanveVarswater Formation, PPM, Bed 3aN -Semi-squatic-12.01-2.57<	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-13.3	- 23.2		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae indet - Langebaanve Varswater Formation, PPM, Bed 3AN - Semi-aquatic -12.7 - 23.3 - Molar fragments when possible Franz-Odendad at al. 2002 - Hippopotamidae indet - Langebaanve Varswater Formation, PPM, Bed 3AN - Semi-aquatic -14.9 - 24.2 - Molar fragments when possible Franz-Odendad at al. 2002 - Hippopotamidae indet - Langebaanve Varswater Formation, PPM, Bed 3AN - Semi-aquatic -14.9 - 24.2 - Molar fragments when possible Franz-Odendad at al. 2002 - Hippopotamidae indet - Langebaanve Varswater Formation, PPM, Bed 3AN - Semi-aquatic -11.8 - 24.2 - - Molar fragments when possible Franz-Odendad at al. 2002 - Hippopotamidae indet - Langebaanve Varswater Formation, PPM, Bed 3AN - Semi-aquatic -12.4 24.4 - - Molar fragments when possible Franz-Odendad at al. 2002 - Hippopotamidae indet - Langebaanve Varswater Formation, PPM, Bed 3AN - Semi-aquatic -12.1 25.	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-11.6	- 26.0		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3AN - Semi-aquatic -14.9 - 24.2 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3AN - Semi-aquatic -11.8 24.2 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3AN - Semi-aquatic -11.8 24.2 - - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3AN - Semi-aquatic -9.4 - 2.44 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3AN - Semi-aquatic -9.4 - 2.44 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3AN - Semi-aquatic -11.5 2.59 -	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-12.7	- 25.3		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed JaN - Semi-aquatic -12.0 - 23.2 - - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed JaN - Semi-aquatic -11.8 - 24.2 - - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed JaN - Semi-aquatic -11.8 - 24.4 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed JaN - Semi-aquatic -12.0 2.57 - - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed JaN - Semi-aquatic -12.0 2.57 - Nolar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed JaN - Semi-aquatic -10.0	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-14.9	- 24.2		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.8 - 242 - Molar fragments when possible Franz-Odendaal et al. 2002 Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -94.1 - 24.4 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -94.1 - 24.4 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.5 - 25.9 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.6 25.9 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.0 25.0 - Molar fragmen	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-12.0	- 23.2		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -9.4 - 4. Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -12.1 - 2.57 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -12.1 - 2.57 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -13.6 - 2.45 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.0 2.50 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.0 2.50 - Molar frag	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-11.8	- 24.2		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -12.1 - 2.57 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.5 - 2.57 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.5 - 2.57 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic - 2.50 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.0 - 2.50 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.8 - <td< td=""><td>-</td><td>Hippopotamidae</td><td>Hippopotamidae indet.</td><td>-</td><td>-</td><td>Langebaanweg</td><td>Varswater Formation, PPM, Bed 3aN</td><td>-</td><td>Semi-aquatic</td><td>-9.4</td><td>- 24.4</td><td></td><td>Molar fragments when possible</td><td>Franz-Odendaal et al., 2002</td></td<>	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-9.4	- 24.4		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.5 - 25.9 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.6 25.9 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.0 25.0 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.0 25.0 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.8 24.3 - Molar fragments when possible Franz-Odendaal et al. 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.8 24.3 - Molar fragments when possible	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-12.1	- 25.7		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -13.6 - 4.5 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.0 - 25.0 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -13.8 24.3 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -13.8 24.3 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -13.8 24.3 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -13.8 24.3 - Molar fragments whe	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-11.5	- 25.9		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.0 - 25.0 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae Hippopotamidae indet - Langebaanwe Varswater Formation, PPM, Bed 3aN - Semi-aquatic -13.8 - - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.8 - - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.7 - Nolar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.7 - Nolar fragments when possible Franz-Odendaal et al., 2002	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-13.6	- 24.5		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -13.8 - 24.3 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.7 - 23.7 - Molar fragments when possible Franz-Odendaal et al., 2002 - Hippopotamidae indet - Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.7 - 23.7 - Molar fragments when possible Franz-Odendaal et al., 2002	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-10.0	- 25.0		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae Hippopotamidae indet Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -11.7 - 23.7 - Molar fragments when possible Franz-Odendaal et al., 2002	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-13.8	- 24.3		Molar fragments when possible	Franz-Odendaal et al., 2002
	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-11.7	- 23.7		Molar fragments when possible	Franz-Odendaal et al., 2002
- Hippopotamidae Hippopotamidae indet Langebaanweg Varswater Formation, PPM, Bed 3aN - Semi-aquatic -10.3 - 25.0 - Molar fragments when possible Franz-Odendaal et al., 2002	-	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Semi-aquatic	-10.3	- 25.0		Molar fragments when possible	Franz-Odendaal et al., 2002
LBW13G-006 Hippopotamidae Hippopotamidae indet Langebaanweg Varswater Formation, PPM - Semi-aquatic -13.3 - 28.1 - Tusk fragment This study	LBW13G-006	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM	-	Semi-aquatic	-13.3	- 28.1		Tusk fragment	This study
LBW13G-007 Hippopotamidae Hippopotamidae indet Langebaanweg Varswater Formation, PPM - Semi-aquatic -10.9 27.1 - Molar This study	LBW13G-007	Hippopotamidae	Hippopotamidae indet.	-	-	Langebaanweg	Varswater Formation, PPM	-	Semi-aquatic	-10.9	- 27.1		Molar	This study
LBW13G-008 ^a Hippopotamidae Hippopotamidae indet Langebaanweg Varswater Formation, PPM - Semi-aquatic -10.2 0.2 29.5 0.9 2 Premolar This study	LBW13G-008 ^a	Hippopotamidae	Hippopotamidae indet.			Langebaanweg	Varswater Formation, PPM	-	Semi-aquatic	-10.2	0.2 29.5	0.9 2	Premolar	This study
- Rhinocerotidae - Ceratotherium praecox Langebaanweg Varswater Formation, PPM, Bed 3aN - Browser -11.1 - 25.5 - Molar fragments when possible Franz-Odendaal et al., 2002		Rhinocerotidae	-	Ceratotherium	praecox	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Browser	-11.1	- 25.5		Molar fragments when possible	Franz-Odendaal et al., 2002
- Rhinocerotidae - Ceratotherium praecox Langebaanweg Varswater Formation. PPM. Bed 3aN - Browser -10.1 - 28.2 - Molar fragments when possible Franz-Odendaal et al. 2002		Rhinocerotidae		Ceratotherium	praecox	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Browser	-10.1	- 28.2		Molar fragments when possible	Franz-Odendaal et al., 2002
- Rhinocerotidae - Ceratotherium praecox Langebaanweg Varswater Formation. PPM. Bed 3aN - Browser -10.5 - 25.0 - Molar fragments when possible Franz-Odendaal et al. 2002		Rhinocerotidae		Ceratotherium	praecox	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Browser	-10.5	- 25.0		Molar fragments when possible	Franz-Odendaal et al., 2002
- Rhinocerotidae - Ceratotherium praecox Langebaanweg Varswater Formation. PPM. Bed 3aN - Browser -11.7 - 26.2 - Molar fragments when possible Franz-Odendaal et al. 2002		Rhinocerotidae		Ceratotherium	praecox	Langebaanweg	Varswater Formation, PPM, Bed 3aN	-	Browser	-11.7	- 26.2		Molar fragments when possible	Franz-Odendaal et al., 2002
- Suidae - Nvanzachoerus cf. jaegeri Langebaanweg Varswater Formation, PPM 12.2 27.9 Molar fragments when possible Franz-Odendaal et al. 2002		Suidae	-	Nyanzachoerus cf.	jaegeri	Langebaanweg	Varswater Formation, PPM	-	-	-12.2	- 27.9		Molar fragments when possible	Franz-Odendaal et al., 2002
- Suidae - Nyanzachoerus cf, jaegeri Langebaanweg Varswater Formation, PPM 10.3 - 26.5 Molar fragments when possible Franz-Odendaal et al. 2002		Suidae	-	Nyanzachoerus cf.	jaegeri	Langebaanweg	Varswater Formation, PPM	-		-10.3	- 26.5		Molar fragments when possible	Franz-Odendaal et al., 2002
- Suidae - Nyanzachoerus cf. jaegeri Langebaanweg Varswater Formation, PPM 12.5 27.7 - Molar fragments when possible Franz-Odendaal et al., 2002		Suidae	-	Nyanzachoerus cf.	jaegeri	Langebaanweg	Varswater Formation, PPM	-		-12.5	- 27.7		Molar fragments when possible	Franz-Odendaal et al., 2002
- Suidae - Nyarzachoerus cf. jaegeri Langebaanweg Varswater Formation, PPM 12.0 - 28.6 Molar fragments when possible Franz-Odendaal et al., 2002	-	Suidae	-	Nyanzachoerus cf.	jaegeri	Langebaanweg	Varswater Formation, PPM	-	-	-12.0	- 28.6		Molar fragments when possible	Franz-Odendaal et al., 2002

^a Averaged enamel samples from one specimen.

^b Teeth are from EFTM (Elandsfontein Main) or WCRP (West Coast Research Project, collected as part of this study). Information for Langebaanweg and Hoedjiespunt are about the collections and geological context.

^c Location of teeth of WCRP collection is givin by bay number (see Braun et al., 2013).

^d Taxa were considered semi-aquatic, grazer, mixed feeder and browser when possible (Sponheimer et al., 2001; Franz-Odendaal et al., 2004; Stynder 2009; 2011; Hare and Sealy, 2013).

^e Original data were reported relative to VPDB and were converted to the VSMOW notation using the equation $\delta^{18}O_{VSMOW} = 1.3086 \times \delta^{18}O_{VPDB} + 30.86$.

f Number of analyses averaged.

⁶ Abbreviations for tooth position and elements are as follows: R, right; L, left; M, molar. Uppercase and lowercase letters refer to the maxillar and mandibular teeth, respectively. Molar position is indicated by 1, 2 or 3, when known.

Tooth element and position information for previsouly published samples are reported from the original studies.

Table S3: The δ^{18} O values of the phosphate and carbonate component of tooth enamel from Elandsfontein and Langebaanweg.

Sample ID	Family	$\delta^{18}O_{enamel-phosphate}$			$\delta^{18}O_{enamel-carbonate}$			ε _{CO3-PO4}	
		(‰ VSMOW)	1σ	n	(‰ VSMOW)	1σ	n	avg (‰ VSMOW)	1σ ^a
Elandsfontein									
WCRP-1669	Bovidae	23.7	0.3	3	34.1	0.6	1	10.2	1.0
EFTM-6177.8	Bovidae	23.5	0.5	2	32.6	0.6	1	8.9	1.1
EFTM-8953	Bovidae	23.0	0.3	4	31.6	0.6	1	8.4	0.9
WCRP-5043	Bovidae	24.1	0.2	4	34.3	0.6	1	10.0	0.9
EFTM-11908	Bovidae	21.6	0.2	4	30.7	0.6	1	8.9	0.9
EFTM-5063	Bovidae	24.0	0.3	4	33.2	0.6	1	9.0	1.0
IZ-7892E	Bovidae	23.2	0.1	4	32.9	0.6	1	9.5	0.9
EFTM-5113.6	Bovidae	24.2	0.4	7	34.4	0.6	1	10.0	1.0
EFTM-1746	Bovidae	22.6	0.2	3	31.9	0.6	1	9.2	0.9
EFTM-1694	Bovidae	25.6	0.2	4	35.5	0.6	1	9.6	0.9
EFTM-8657	Bovidae	24.4	0.3	3	34.8	0.6	1	10.1	0.9
EFTM-2728	Bovidae	25.7	0.2	4	36.7	0.6	1	10.7	0.9
EFTM-2738	Bovidae	25.1	0.4	4	34.8	0.6	1	9.4	1.0
WCRP-1666	Bovidae	23.0	0.1	3	32.7	0.6	1	9.5	0.8
EFTM-4088	Hippopotamidae	20.3	0.2	4	29.3	0.6	1	8.8	0.9
EFTM-4030	Hippopotamidae	21.2	0.2	3	30.5	0.6	1	9.1	0.9
EFTM-MSI2699	Hippopotamidae	19.9	0.4	4	28.7	0.6	1	8.6	1.0
EFTM-6727	Equidae	22.1	0.2	4	32.0	0.6	1	9.7	0.9
EFTM-16660	Equidae	22.8	0.4	6	32.0	0.6	1	9.0	1.0
EFTM-2112	Equidae	23.5	0.1	3	33.9	0.6	1	10.2	0.9
EFTM-5065	Equidae	23.7	0.1	4	33.1	0.6	1	9.1	0.9
EFTM-8958A	Equidae	22.8	0.3	3	32.7	0.6	1	9.7	1.0
WCRP-2103	Equidae	23.1	0.4	6	32.3	0.6	1	8.9	1.0
EFTM-2619	Equidae	22.3	0.2	2	31.6	0.6	1	9.0	0.9
EFTM-1952	Equidae	23.3	0.3	4	33.1	0.6	1	9.6	0.9
EFTM-4028A	Giraffidae	24.4	0.0	3	35.0	0.6	1	10.3	0.8
EFTM-4031	Giraffidae	23.6	0.3	2	33.5	0.6	2	9.6	0.9
WCRP-8031	Giraffidae	23.1	0.3	4	32.8	0.6	1	9.5	0.9
EFTM-20939	Rhinocerotidae	23.6	0.2	2	32.2	0.6	1	8.5	0.9
EFTM-20982D	Rhinocerotidae	23.3	0.2	4	33.0	0.6	1	9.4	0.9
EFTM-16617A	Rhinocerotidae	24.0	0.4	4	31.7	0.6	1	7.4	1.0
EFTM-8700K	Rhinocerotidae	23.3	0.2	4	31.1	0.3	2	7.6	0.7
EFTM-3410A	Rhinocerotidae	23.8	0.1	2	32.3	0.6	1	83	0.9
EFTM-8610B	Rhinocerotidae	22.9	0.2	3	32.2	0.6	1	9.0	0.9
EFTM-93998	Rhinocerotidae	22.5	0.2	3	31.3	0.6	1	86	0.9
WCRP-12156	Suidae	22.5	0.3	3	32.3	0.6	1	9.6	1.0
WCRP-12284	Suidae	22.7	0.3	4	32.5	0.6	1	9.6	1.0
WCRP-6438	Suidae	22.8	0.3	1	31.4	0.6	1	8.4	1.0
I angebaanweg									
LBW13G_001	Bovidae	25.2	02	4	34.6	0.6	1	9.2	00
LBW13G-004	Equidae	22.2	0.4		31.2	0.0	1	8.2	1.0
LBW13G-004	Hinnonotamidae	20.3	0.4	4	28.1	0.0	1	77	0.9
LBW13G-007	Hippopotamidae	19.9	0.1	4	27.1	0.0	1	7.0	0.9
LBW13G_008A	Hippopotamidae	21.3	0.2	2	27.1	0.0	1	8.8	1.2
LBW13G-008R	Hippopotamidae	21.5	0.7	2	28.7	0.0	1	7.4	1.4
I BW13G_008 (A & D)	Hippopotamidae	21.2	0.0	4	20.7	1 1	2	7. 4 8.1	1.1
LBW13G_000 (A & B)	Giraffidaa	21.3	0.0	4	34.0	0.6	2 1	86	0.0
LBW13G_010	Giraffidae	24.0	0.1	4	33.3	0.0	1	9.1	1.0
LD w 130-010	Ghannuae	24.0	0.4	4	33.3	0.0	1	2.1	1.0

^a propagated error

 $\varepsilon_{\text{carbonate-phosphate}} = \sqrt{(\text{standard deviation } \delta^{18} \text{O}_{\text{enamel-phosphate}}) + (\text{standard deviation } \delta^{18} \text{O}_{\text{enamel-carbonate}})}$

Table S4: Oxygen and hydrogen isotope composition of waters from southwestern South Africa.

Location	Sample source	Year(s) of	δ ¹⁸ O of water avg ^b	δ ² H of water avg ^b	Rainfall	References	
		collection ^a	% VSMOW	% VSMOW	zone		
Cape Town	Springs	1996, 1997, 2010 - 2012	-3.3 ± 0.5 (<i>n</i> = 87)	-10.7 ± 2.0 (<i>n</i> = 69)	Winter	Harris et al., 2000; Harris and Diamond, 2013	
Cape Town	Water treatment plants	1996, 1997	-3.0 ± 1.5 (<i>n</i> = 16)	-10.3 ± 8.5 (<i>n</i> = 16)	Winter	Harris et al., 1999	
Cape Town	Aquifers	1996, 1997	$-3.0\pm0.6 (n = 29)$	$-12.1 \pm 4.7 (n = 29)$	Winter	Harris et al., 1999	
Western Cape (primarily surrounding Cape Town)	Rivers	1996, 1997, 2010 - 2012	-3.5 ± 1.2 (<i>n</i> = 68)	$-16.1 \pm 10.0 \ (n = 70)$	Winter	Harris et al., 1999; Harris and Diamond, 2013	
University of Cape Town	Precipitation (monthly)	1996 - 2008	-2.8 ± 1.7 (<i>n</i> = 163)	-9.5 ± 2.8 (<i>n</i> = 163)	Winter	Harris et al., 2010	
University of Cape Town	Precipitation (daily)	1996 - 2008	-2.67 ± 2.1 (<i>n</i> = 109)	$-7.1 \pm 14.2 \ (n = 109)$	Winter	Harris et al., 2010	
Western Cape (primarily surrounding Cape Town)	Precipitation	2010 - 2012	-2.9 $(n = \text{ND})^{c}$	-9.2 $(n = \text{ND})^{c}$	Winter	Harris and Diamond, 2013	
Table Mountain Cableway, Cape Town	Precipitation	2010 - 2012	$-3.6\pm1.1, -3.7 (n=18)^{\circ}$	-12.4 \pm 5.8, 14.4 ($n = 17$) ^c	Winter	Harris and Diamond, 2013	
Jonkershoek Valley (closest major city is	Catchment waters	1992	-4.0 ± 0.2 (<i>n</i> = 24)	ND	Winter	Midgley and Scott, 1994	
Western Cape, West Coast	Groundwater and precipitation	1999 - 2000	-3.9 ± 1.4 (<i>n</i> = 19)	ND	Winter	Weaver and Telma, 2005	
Western Cape, South Coast	Groundwater and precipitation	1999 - 2000	-5.2 ± 1.3 (<i>n</i> = 5)	ND	Annual	Weaver and Telma, 2005	
Hopefield, Western Cape	Precipitation (annually cumulative)	1999 - 2000	-3.2 (n = 1)	ND	Winter	Weaver and Telma, 2005	
Langebaan Road Wellfield, Western Cape	Precipitation (annually cumulative)	1999 - 2000	-2.8 (n = 1)	ND	Winter	Weaver and Telma, 2005	
Langebaan Road Wellfield, Western Cape	Aquifer	1999 - 2000	-3.6 ± 0.1 (<i>n</i> = 4)	ND	Winter	Weaver and Telma, 2005	
Cape Fold Belt	Precipitation	2010 - 2012	-4.3 ± 1.8 (<i>n</i> = 226)	-17.1±9.8 (<i>n</i> = 232)	Winter and Annual	Harris and Diamond, 2013	
Jonkershoek Valley area	Groundwater, tapwater, modeled isoscape	2006, 2007, 2009, 2010	-5.2 to -2.9 (model based on 770 water samples)	-29.0 to -10.0	Winter	West et al., 2014	

Table S4: Oxygen and hydrogen isotope composition of waters from southwestern South Africa.

Location	Sample source	Year(s) of collection ^a	δ ¹⁸ O of water avg ^b ‰ VSMOW	δ ² H of water avg ^b ‰ VSMOW	Rainfall zone	References
Elandsfontein area	Groundwater, tapwater, modeled isoscape	2006, 2007, 2009, 2010	-2.8 to -0.5 (model based on 770 water samples)	-19.0 to 0.0	Winter	West et al., 2014
Elandsfontein ^d	Standing water	2010	1.5 (<i>n</i> = 1)	6.2 (<i>n</i> = 1)	Winter	This study (sample SA10W400) WGS-84 Lat/Long: -33.1250, 18.23667
Elandsfontein ^d	Spring water	2010	-3.2 (n = 1)	-13.8 (<i>n</i> = 1)	Winter	This study (sample SA10W401) WGS-84 Lat/Long: -33.10744, 18.20932
Western Cape Fossil Park ^d	Tap water	2010	-1.9 (<i>n</i> = 1)	-9.2 (<i>n</i> = 1)	Winter	This study (sample SA10W402) WGS-84 Lat/Long: -32.95659, 18.11633
Brakfontein, near Elandsfontein ^d	Spring water	2010	-3.3 (<i>n</i> = 1)	-14.4 (<i>n</i> = 1)	Winter	This study (sample SA10W403) WGS-84 Lat/Long: -32.95215, 18.24296

^a Only months with both precipitation amount and δ^{18} O of precipitation were used for this study. Samples were not collected over continous time periods for every site.

^b Isotope data are reported as averages with thier standard deviation (1σ) . The number of samples are given in parentheses.

^c Weighted mean of rainfall as reported in Harris and Diamond (2013).

^d GPS coordinates for the samples collected and their sample ID are provided in the refernce column. 'ND' is used to indicate no data.