1,352 research outputs found

    Directed Molecular Stacking for Engineered Fluorescent Three-Dimensional Reduced Graphene Oxide and Coronene Frameworks

    Get PDF
    [EN] Three‐dimensional fluorescent graphene frameworks with controlled porous morphologies are of significant importance for practical applications reliant on controlled structural and electronic properties, such as organic electronics and photochemistry. Here we report a synthetically accessible approach concerning directed aromatic stacking interactions to give rise to new fluorogenic 3D frameworks with tuneable porosities achieved through molecular variations. The binding interactions between the graphene‐like domains present in the in situ‐formed reduced graphene oxide (rGO) with functional porphyrin molecules lead to new hybrids via an unprecedented solvothermal reaction. Functional free‐base porphyrins featuring perfluorinated aryl groups or hexyl chains at their meso‐ and β‐positions were employed in turn to act as directing entities for the assembly of new graphene‐based and foam‐like frameworks and of their corresponding coronene‐based hybrids. Investigations in the dispersed phase and in thin‐film by XPS, SEM and FLIM shed light onto the nature of the aromatic stacking within functional rGO frameworks (denoted rGOFs) which was then modelled semi‐empirically and by DFT calculations. The pore sizes of the new emerging reduced graphene oxide hybrids are tuneable at the molecular level and mediated by the bonding forces with the functional porphyrins acting as the “molecular glue”. Single crystal X‐ray crystallography described the stacking of a perfluorinated porphyrin with coronene, which can be employed as a molecular model for understanding the local aromatic stacking order and charge transfer interactions within these rGOFs for the first time. This opens up a new route to controllable 3D framework morphologies and pore size from the Ångstrom to the micrometre scale. Theoretical modelling showed that the porosity of these materials is mainly due to the controlled inter‐planar distance between the rGO, coronene or graphene sheets. The host‐guest chemistry involves the porphyrins acting as guests held through π‐π stacking, as demonstrated by XPS. The objective of this study is also to shed light into the fundamental localised electronic and energy transfer properties in these new molecularly engineered porous and fluorogenic architectures, aiming in turn to understand how functional porphyrins may exert stacking control over the notoriously disordered local structure present in porous reduced graphene oxide fragments. By tuning the porosity and the distance between the graphene sheets using aromatic stacking with porphyrins, it is also possible to tune the electronic structure of the final nanohybrid material, as indicated by FLIM experiments on thin films. Such nanohybrids with highly controlled pores dimensions and morphologies open the way to new design and assembly of storage devices and applications incorporating π‐conjugated molecules and materials and their π‐stacks may be relevant towards selective separation membranes, water purification and biosensing applications.S.I.P. and S.W.B. thank The Royal Society and STFC for funding. B.Y.M. thanks the University of Bath for a studentship (ORS). D.G.C. thanks the Fundación General CSIC for funding (ComFuturo Program). Dr. Jose A. Ribeiro Martins, Professors Jeremy K. M. Sanders and Paul Raithby are acknowledged for training, helpful discussions and porphyrin supramolecular chemistry. The S.I.P. group thanks the EPSRC for funding to the Centre of Graphene Science (EP/K017160/1) and to the Centre for Doctoral Training in Sustainable Chemical Technologies (EP/L016354/1). The authors thank EPSRC National Service for Mass Spectrometry at Swansea and EPSRC National Service for Crystallography at Southampton for data collection. The authors also acknowledge the ERC for the Consolidator Grant O2SENSE (617107, 2014–2019)

    Reaction-Diffusion Processes as Physical Realizations of Hecke Algebras

    Full text link
    We show that the master equation governing the dynamics of simple diffusion and certain chemical reaction processes in one dimension give time evolution operators (Hamiltonians) which are realizations of Hecke algebras. In the case of simple diffusion one obtains, after similarity transformations, reducible hermitian representations while in the other cases they are non-hermitian and correspond to supersymmetric quotients of Hecke algebras.Comment: Latex, 6 pages, BONN-HE-93.1

    Constraint on the time variation of the fine-structure constant with the SDSS-III/BOSS DR12 quasar sample

    Full text link
    From the Sloan Digital Sky Survey (SDSS) Data Release 12, which covers the full Baryonic Oscillation Spectroscopic Survey (BOSS) footprint, we investigate the possible variation of the fine-structure constant over cosmological time-scales. We analyse the largest quasar sample considered so far in the literature, which contains 13175 spectra (10363 from SDSS-III/BOSS DR12 + 2812 from SDSS-II DR7) with redshift z<z<\,1. We apply the emission-line method on the [O III] doublet (4960, 5008 A) and obtain Δα/α=(0.9±1.8)×105\Delta\alpha/\alpha= \left(0.9 \pm 1.8\right)\times10^{-5} for the relative variation of the fine-structure constant. We also investigate the possible sources of systematics: misidentification of the lines, sky OH lines, Hβ\,\beta and broad line contamination, Gaussian and Voigt fitting profiles, optimal wavelength range for the Gaussian fits, chosen polynomial order for the continuum spectrum, signal-to-noise ratio and good quality of the fits. The uncertainty of the measurement is dominated by the sky subtraction. The results presented in this work, being systematics limited, have sufficient statistics to constrain robustly the variation of the fine-structure constant in redshift bins (Δz\Delta z\approx 0.06) over the last 7.9 Gyr. In addition, we study the [Ne III] doublet (3870, 3969 A) present in 462 quasar spectra and discuss the systematic effects on using these emission lines to constrain the fine-structure constant variation. Better constraints on Δα/α \Delta\alpha/\alpha\ (<<106^{-6}) using the emission-line method would be possible with high-resolution spectroscopy and large galaxy/qso surveys.Comment: 16 pages, 16 figures. Version published in MNRAS. Analysis enlarged, public catalogue now availabl

    A Group Decision Making Approach Considering Self-Confidence Behaviors and Its Application in Environmental Pollution Emergency Management

    Get PDF
    Self-confidence as one of the human psychological behaviors has important influence on emergency management decision making, which has been ignored in existing methods. To fill this gap, we dedicate to design a group decision making approach considering self-confidence behaviors and apply it to the environmental pollution emergency management. In the proposed method, the self-confident fuzzy preference relations are utilized to express experts’ evaluations. This new type of preference relations allow experts to express multiple self-confidence levels when providing their evaluations, which can deal with the self-confidence of them well. To apply the proposed group decision making method to environmental pollution emergency management, a novel determination of the decision weights of experts is given combining the subjective and objective weights. The subjective weight can be directly assigned by organizer, while the objective weight is determined by the self-confidence degree of experts on their evaluations. Afterwards, by utilizing the weighted averaging operator, the individuals’ evaluations can be aggregated into a collective one. To do that, some operational laws for self-confident fuzzy preference relations are introduced. And then, a self-confidence score function is designed to get the best solution for environmental pollution emergency management. Finally, some analyses and discussions show that the proposed method is feasible and effective.The work was supported by National Key R&D Program of China (Grant No. 2017YFC0404600), National Natural Science Foundation of China (NSFC) under Grants (71871085, 71471056), Qing Lan Project of Jiangsu Province. Additionally, Xia Liu andWeike Zhang gratefully acknowledge the financial support of the China Scholarship Council (Nos. 201706710084, 201806240231)

    Squeezed States and Helmholtz Spectra

    Get PDF
    The 'classical interpretation' of the wave function psi(x) reveals an interesting operational aspect of the Helmholtz spectra. It is shown that the traditional Sturm-Liouville problem contains the simplest key to predict the squeezing effect for charged particle states.Comment: 10 pages, Latex, 3 gzip-compressed figures in figh.tar.g

    Top-down effect of arthropod predator chinese mitten crab on freshwater nutrient cycling

    Get PDF
    Aquatic litter decomposition is highly dependent on contributions and interactions at different trophic levels. The invasion of alien aquatic organisms like the channeled apple snail (Pomacea canaliculata) might lead to changes in the decomposition process through new species interactions in the invaded wetland. However, it is not clear how aquatic macroinvertebrate predators like the Chinese mitten crab (Eriocheir sinensis) will affect the nutrient cycle in freshwater ecosystems in the face of new benthic invasion. We used the litter bag method to explore the top-down effect of crabs on the freshwater nutrient cycle with the help of soil zymography (a technology previously used in terrestrial ecosystems). The results showed significant feeding effects of crabs and snails on lotus leaf litter and cotton strips. Crabs significantly inhibited the intake of lotus litter and cotton strips and the ability to transform the environment of snails by predation. Crabs promoted the decomposition of various litter substrates by affecting the microbial community structure in the sediment. These results suggest that arthropod predators increase the complexity of detrital food webs through direct and indirect interactions, and consequently have an important impact on the material cycle and stability of freshwater ecosystems. This top-down effect makes macrobenthos play a key role in the biological control and engineering construction of freshwater ecosystems.Sincere thanks to the Jiangsu Provincial Department of Agriculture (JBGS [2021]126), Jiangsu Provincial Department of Science and Technology (BE2019393), Jiangsu Forestry Science and Technology Innovation and Promotion project (LYKJ [2021]16), and Portuguese Foundation for Science and Technology (FCT) through SFRH/BD/119957/2016 scholarship for supporting this study financially. Thanks also to the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm for supporting this study

    Investigating New Applications of a Photoswitchable Fluorescent Norbornadiene as a Multifunctional Probe for Delineation of Amyloid Plaque Polymorphism

    Get PDF
    Amyloid beta (Aβ) plaques are a major pathological hallmark of Alzheimer’s disease (AD) and constitute of structurally heterogenic entities (polymorphs) that have been implicated in the phenotypic heterogeneity of AD pathology and pathogenesis. Understanding amyloid aggregation has been a critical limiting factor to gain understanding of AD pathogenesis, ultimately reflected in that the underlying mechanism remains elusive. We identified a fluorescent probe in the form of a turn-off photoswitchable norbornadiene derivative (NBD1) with several microenvironment-sensitive properties that make it relevant for applications within advanced fluorescence imaging, for example, multifunctional imaging. We explored the application of NBD1 for in situ delineation of structurally heterogenic Aβ plaques in transgenic AD mouse models. NBD1 plaque imaging shows characteristic broader emission bands in the periphery and more narrow emission bands in the dense cores of mature cored plaques. Further, we demonstrate in situ photoisomerization of NBD1 to quadricyclane and thermal recovery in single plaques, which is relevant for applications within both functional and super-resolution imaging. This is the first time a norbornadiene photoswitch has been used as a probe for fluorescence imaging of Aβ plaque pathology in situ and that its spectroscopic and switching properties have been studied within the specific environment of senile Aβ plaques. These findings open the way toward new applications of NBD-based photoswitchable fluorescent probes for super-resolution or dual-color imaging and multifunctional microscopy of amyloid plaque heterogeneity. This could allow to visualize Aβ plaques with resolution beyond the diffraction limit, label different plaque types, and gain insights into their physicochemical composition

    Nucleus pulposus cell-matrix interactions with laminins

    Get PDF
    The cells of the nucleus pulposus (NP) region of the intervertebral disc play a critical role in this tissue’s generation and maintenance, and alterations in NP cell viability, metabolism, and phenotype with aging may be key contributors to progressive disc degeneration. Relatively little is understood about the phenotype of NP cells, including their cell-matrix interactions which may modulate phenotype and survival. Our previous work has identified strong and region-specific expression of laminins and laminin cell-surface receptors in immature NP tissues, suggesting laminin cell-matrix interactions are uniquely important to the biology of NP cells. Whether these observed tissue-level laminin expression patterns reflect functional adhesion behaviors for these cells is not known. In this study, we examined NP cell-matrix interactions with specific matrix ligands, including various laminin isoforms, using quantitative assays of cell attachment, spreading, and adhesion strength. NP cells were found to attach in higher numbers and exhibited rapid cell spreading and higher resistance to detachment force on two laminin isoforms (LM-511,LM-332) identified to be uniquely expressed in the NP region, as compared to another laminin isoform (LM-111) and several other matrix ligands (collagen, fibronectin). Additionally, NP cells were found to attach in higher numbers to laminins as compared to cells isolated from the disc’s annulus fibrosus region. These findings confirm that laminin and laminin receptor expression documented in NP tissues translates into unique functional NP cell adhesion behaviors that may be useful tools for in vitro cell culture and biomaterials that support NP cells

    Commercial refrigeration - An overview of current status

    Full text link
    [EN] Commercial Refrigeration comprises food freezing and conservation in retail stores and supermarkets, so, it is one of the most relevant energy consumption sectors, and its relevance is increasing. This paper reviews the most recent developments in commercial refrigeration available in literature and presents a good amount of results provided these systems, covering some advantages and disadvantages in systems and working fluids. Latest researches are focused on energy savings to reduce CO2 indirect emissions due to the burning of fossil fuels. They are focused on system modifications (as dedicated subcooling or the implementation of ejectors), trigeneration technologies (electrical, heating and cooling demand) and better evaporation conditions control. Motivated by latest GWP regulations that are intended to reduce high GWP HFC emissions; R404A and R507 are going to phase out. Besides hydrocarbons and HFO, CO2 appears as one of the most promising HFC replacements because its low contribution to global warming and high efficiencies when used in transcritical and low-stage of cascade systems.The authors thankfully acknowledge "Ministerio de Educacion, Cultura y Deporte" for supporting this work through "Becas y Contratos de Formacion de Profesorado Universitario del Programa Nacional de Formacion de Recursos Humanos de Investigacion del ejercicio 2012".Mota Babiloni, A.; Navarro Esbri, J.; Barragán Cervera, Á.; Moles, F.; Peris, B.; Verdú Martín, GJ. (2015). Commercial refrigeration - An overview of current status. International Journal of Refrigeration. 57:186-196. doi:10.1016/j.ijrefrig.2015.04.013S1861965

    Experimental evaluation of R448A as R404A lower-GWP alternative in refrigeration systems

    Full text link
    Due to the adoption of EU Regulation No 517/2014, R404A is going to be banned in Europe in most of refrigeration applications, in which is typically used, due to its very high GWP value, 3943. In this paper an experimental comparison between R404A and R448A, a non-flammable alternative with GWP of 1390, is presented. The experimental tests are intended to simulate typical freezing and conservation temperatures and different condensing conditions. Despite cooling capacity of R448A is slightly below that of R404A, R448A energy consumption is even smaller; and R448A COP is higher than that obtained using R404A. Hence, it can be concluded that R448A could be an energy efficient alternative to R404A with a GWP reduction of 70%. Compressor discharge temperature remains at non-dangerous levels.The authors thankfully acknowledge "Ministerio de Educacion, Cultura y Deporte - Gobierno de Espana" (Grant Number FPU12/02841) for supporting this work through "Becas y Contratos de Formacion de Profesorado Universitario del Programa Nacional de Formacion de Recursos Humanos de Investigacion del ejercicio 2012".Mota Babiloni, A.; Navarro Esbrí, J.; Peris, B.; Moles, F.; Verdú Martín, GJ. (2015). Experimental evaluation of R448A as R404A lower-GWP alternative in refrigeration systems. Energy Conversion and Management. 105:756-762. https://doi.org/10.1016/j.enconman.2015.08.034S75676210
    corecore