79 research outputs found

    18^{18}F-PSMA-1007 salivary gland dosimetry: Comparison between different methods for dose calculation and assessment of inter- and intra-patient variability

    Get PDF
    Dosimetry of salivary glands (SGs) is usually implemented using simplified calculation approaches and approximated geometries. Our aims were to compare different dosimetry methods to calculate SGs absorbed doses (ADs) following 18F-PSMA-1007 injection, and to assess the AD variation across patients and single SG components. Five patients with prostate cancer recurrence underwent PET/CT acquisitions of the head and neck, 0.5, 2 and 4 hours after 18F-PSMA-1007 injection. Parotid and submandibular glands were segmented on CT to derive SGs volumes and masses, while PETs were used to derive Time-Integrated Activity Coefficients. Average ADs to single SG components or total SG (tSG) were calculated with the following methods: i) direct Monte Carlo (MC) simulation with GATE/GEANT4; ii) spherical model (SM) of OLINDA/EXM 2.1, adopting either patient-specific or standard ICRP89 organ masses (SMstd); iii) ellipsoidal model (EM); iv) MIRD approach with organ S-factors from OLINDA/EXM 2.1 and OpenDose collaboration, with or without contribution from cross irradiation originating outside the SGs. The maximum percent AD difference across SG components ({\delta}max) and across patients ({\Delta}max) were calculated. Compared to MC, ADs to single SG components were significantly underestimated by all methods (average relative differences between -14.5% and -30.4%). Using MC, SM and EM, {\delta}max were never below 25% (up to 113%). {\delta}max up to 702% were obtained with SMstd. Concerning tSG, results within 10% of the MC were obtained only if cross irradiation from the remainder of the body or from the remainder of the head was accounted for. The {\Delta}max ranged between 58% and 78% across patients. Specific masses of single SG components should always be considered given their large intra- and inter- patient variability.Comment: 33 pages, 3 figures, sumbitted to "Physics in Medicine & Biology

    Effects of 26 weeks of treatment with empagliflozin versus glimepiride on the myocardial glucose metabolic rate in patients with type 2 diabetes. The randomized, open-label, crossover, active-comparator FIORE trial

    Get PDF
    Aim To determine whether treatment with empagliflozin was able to affect the myocardial glucose metabolic rate, as assessed by cardiac dynamic F-18-fluorodeoxyglucose-positron emission tomography (F-18-FDG-PET) combined with euglycaemic-hyperinsulinaemic clamp compared with glimepiride in patients with type 2 diabetes. Materials and Methods To further investigate the cardioprotective mechanism of sodium-glucose co-transporter-2 inhibitors, we performed a 26-week, randomized, open-label, crossover, active-comparator study to determine the effects of empagliflozin 10 mg versus glimepiride 2 mg daily on the myocardial glucose metabolic rate assessed by cardiac dynamic F-18-FDG-PET combined with euglycaemic-hyperinsulinaemic clamp in 23 patients with type 2 diabetes. We also measured cardiac geometry and myocardial mechano-energetic efficiency, as well as systolic and diastolic function by echocardiography. Results Compared with glimepiride, treatment with empagliflozin resulted in a greater reduction in the myocardial glucose metabolic rate from baseline to 26 weeks (adjusted difference -6.07 [-8.59, -3.55] mu mol/min/100 g; P < .0001). Moreover, compared with glimepiride, empagliflozin led to significant reductions in left atrial diameter, left ventricular end-systolic and end-diastolic volumes, N-terminal pro b-type natriuretic peptide levels, blood pressure, heart rate, stroke work, and myocardial oxygen consumption estimated by the rate pressure product, and increases in ejection fraction, myocardial mechano-energetic efficiency, red blood cells, and haematocrit and haemoglobin levels. Conclusions The present study provides evidence that empagliflozin treatment in subjects with type 2 diabetes without coronary artery disease leads to a significant reduction in the myocardial glucose metabolic rate

    EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptor- and PSMA-targeting ligands

    Get PDF
    The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.</p

    The KLEVER Survey: spatially resolved metallicity maps and gradients in a sample of 1.2 < z < 2.5 lensed galaxies

    Get PDF
    We present near-infrared observations of 42 gravitationally lensed galaxies obtained in the framework of the KMOS Lensed Emission Lines and VElocity Review (KLEVER) Survey, a programme aimed at investigating the spatially resolved properties of the ionized gas in 1.2 3σ) ‘inverted’ gradients are also found, showing an anticorrelation between metallicity and star formation rate density on local scales, possibly suggesting recent episodes of pristine gas accretion or strong radial flows in place. Nevertheless, the individual metallicity maps are characterized by a variety of different morphologies, with flat radial gradients sometimes hiding non-axisymmetric variations on kpc scales, which are washed out by azimuthal averages, especially in interacting systems or in those undergoing local episodes of recent star formation

    The missing link: Tracing molecular gas in the outer filament of Centaurus A

    Get PDF
    We report the detection, using observations of the CO(2−1) line performed with the Atacama Pathfinder EXperiment (APEX), of molecular gas in the region of the outer filament of Centaurus A, a complex region known to show various signatures of an interaction between the radio jet, an H i cloud, and ionised gas filaments. We detect CO(2−1) at all observed locations, which were selected to represent regions with very different physical conditions. The H2 masses of the detections range between 0.2 × 106 and 1.1 × 106M⊙, for conservative choices of the CO to H2 conversion factor. Surprisingly, the stronger detections are not coincident with the H i cloud, but instead are in the region of the ionised filaments. We also find variations in the widths of the CO(2−1) lines throughout the region, with broader lines in the region of the ionised gas, i.e. where the jet-cloud interaction is strongest, and with narrow profiles in the H i cloud. This may indicate that the molecular gas in the region of the ionised gas has the momentum of the jet-cloud interaction encoded in it, in the same way as the ionised gas does. These molecular clouds may therefore be the result of very efficient cooling of the down-stream gas photo- or shock-ionised by the interaction. On the other hand, the molecular clouds with narrower profiles, which are closer to or inside the H i cloud, could be pre-existing cold H2 cores which manage to survive the effects of the passing jet

    SDSS-IV MaNGA: the spatial distribution of star formation and its dependence on mass, structure, and environment

    Get PDF
    We study the spatially resolved star formation of 1494 galaxies in the SDSS-IV MaNGA Survey. Star formation rates (SFRs) are calculated using a two-step process, using H α in star-forming regions and Dn4000 in regions identified as active galactic nucleus/low-ionization (nuclear) emission region [AGN/LI(N)ER] or lineless. The roles of secular and environmental quenching processes are investigated by studying the dependence of the radial profiles of specific star formation rate on stellar mass, galaxy structure, and environment. We report on the existence of ‘centrally suppressed’ galaxies, which have suppressed Specific Star Formation Rate (SSFR) in their cores compared to their discs. The profiles of centrally suppressed and unsuppressed galaxies are distributed in a bimodal way. Galaxies with high stellar mass and core velocity dispersion are found to be much more likely to be centrally suppressed than low-mass galaxies, and we show that this is related to morphology and the presence of AGN/LI(N)ER like emission. Centrally suppressed galaxies also display lower star formation at all radii compared to unsuppressed galaxies. The profiles of central and satellite galaxies are also compared, and we find that satellite galaxies experience lower specific star formation rates at all radii than central galaxies. This uniform suppression could be a signal of the stripping of hot halo gas in the process known as strangulation. We find that satellites are not more likely to be suppressed in their cores than centrals, indicating that the core suppression is an entirely internal process. We find no correlation between the local environment density and the profiles of star formation rate surface density
    corecore