8 research outputs found

    Human serum albumin nanoparticles loaded with phthalocyanine dyes for potential use in photodynamic therapy of atherosclerotic plaques

    Full text link
    Diseases caused by obstruction or rupture of vulnerable plaques in the arterial walls such as cardiovascular infarction or stroke are the leading cause of death in the world. In the present work, we developed human serum albuminnanoparticles loaded by physisorption with zinc phthalocyanine, TT1, mainly used for industrial application as near-infrared photosensitizer and compared these to HSA NPsloaded with the well-known silicone phthalocyanine (Pc4). The use of NIR light allows for better tissue penetration, while the use of nanoparticles permitshigh local concentrations. The particles were characterized and tested for toxicity and stability as well as for their potential use as a contrast agent and NIR photosensitizer for photodynamic therapy in cardiovascular disease. We focused on the distribution of the nanoparticles in RAW264.7macrophage cells and atherosclerotic mice. The nanoparticles had an average size of 120 nm according todynamic light scattering, good loading capacity for zinc phthalocyanine,and satisfying stability in 50% (v/v) fetal bovine serum for 8 hours and in an aqueous environment at 4°C for 4–6 weeks. Under light irradiation we found a high production of singlet oxygen and the products showed no dark toxicity in vitro with macrophages(the target cells in vulnerable plaques),but at a low ÎŒg/mL nanoparticleconcentration killed efficiently the macrophagesupon LED illumination. Injection of the contrast agentin atherosclerotic mice led to a visible fluorescence signal of zinc phthalocyaninein the atherosclerotic plaque at 30 minutes and in the lungs with afast clearance of the nanoparticles. Zinc phthalocyanine loaded human serum albumin nanoparticles present an interesting candidate for the visualization and potentially photodynamictreatment of macrophages in atherosclerotic plaquesThe research leading to these results has received funding from FP7-NMP CosmoPHOS-Nano under grant agreement No. 310337. Additional funding was received by the Spanish groups from MINECO (CTQ2017-85393-P) and ERA-NET/MINECO EuroNanoMed2017-191 / PCIN-2017-04

    Amphiphilic Phthalocyanines in Polymeric Micelles: A Supramolecular Approach toward Efficient Third-Generation Photosensitizers

    Get PDF
    In this paper we describe a straightforward supramolecular strategy to encapsulate silicon phthalocyanine (SiPc) photosensitizers (PS) in polymeric micelles made of poly(Δ-caprolactone)-b-methoxypoly(ethylene glycol) (PCL–PEG) block copolymers. While PCL–PEG micelles are promising nanocarriers based on their biocompatibility and biodegradability, the design of our new PS favors their encapsulation. In particular, they combine two axial benzoyl substituents, each of them carrying either three hydrophilic methoxy(triethylenoxy) chains (1), three hydrophobic dodecyloxy chains (3), or both kinds of chains (2). The SiPc derivatives 1 and 2 are therefore amphiphilic, with the SiPc unit contributing to the hydrophobic core, while lipophilicity increases along the series, making it possible to correlate the loading efficacy in PCL–PEG micelles with the hydrophobic/hydrophilic balance of the PS structure. This has led to a new kind of third-generation nano-PS that efficiently photogenerates 1O2, while preliminary in vitro experiments demonstrate an excellent cellular uptake and a promising PDT activity.final draftpeerReviewe

    Macrophage selective photodynamic therapy by meta-tetra(hydroxyphenyl)chlorin loaded polymeric micelles : A possible treatment for cardiovascular diseases

    No full text
    Selective elimination of macrophages by photodynamic therapy (PDT) is a new and promising therapeutic modality for the reduction of atherosclerotic plaques. m-Tetra(hydroxyphenyl)chlorin (mTHPC, or Temoporfin) may be suitable as photosensitizer for this application, as it is currently used in the clinic for cancer PDT. In the present study, mTHPC was encapsulated in polymeric micelles based on benzyl-poly(Δ-caprolactone)-b-methoxy poly(ethylene glycol) (Ben-PCL-mPEG) using a film hydration method, with loading capacity of 17%. Because of higher lipase activity in RAW264.7 macrophages than in C166 endothelial cells, the former cells degraded the polymers faster, resulting in faster photosensitizer release and higher in vitro photocytotoxicity of mTHPC-loaded micelles in those macrophages. However, we observed release of mTHPC from the micelles in 30 min in blood plasma in vitro which explains the observed similar in vivo pharmacokinetics of the mTHPC micellar formulation and free mTHPC. Therefore, we could not translate the beneficial macrophage selectivity from in vitro to in vivo. Nevertheless, we observed accumulation of mTHPC in atherosclerotic lesions of mice aorta's which is probably the result of binding to lipoproteins upon release from the micelles. Therefore, future experiments will be dedicated to increase the stability and thus allow accumulation of intact mTHPC-loaded Ben-PCL-mPEG micelles to macrophages of atherosclerotic lesions

    Macrophage selective photodynamic therapy by meta-tetra(hydroxyphenyl)chlorin loaded polymeric micelles : A possible treatment for cardiovascular diseases

    No full text
    Selective elimination of macrophages by photodynamic therapy (PDT) is a new and promising therapeutic modality for the reduction of atherosclerotic plaques. m-Tetra(hydroxyphenyl)chlorin (mTHPC, or Temoporfin) may be suitable as photosensitizer for this application, as it is currently used in the clinic for cancer PDT. In the present study, mTHPC was encapsulated in polymeric micelles based on benzyl-poly(Δ-caprolactone)-b-methoxy poly(ethylene glycol) (Ben-PCL-mPEG) using a film hydration method, with loading capacity of 17%. Because of higher lipase activity in RAW264.7 macrophages than in C166 endothelial cells, the former cells degraded the polymers faster, resulting in faster photosensitizer release and higher in vitro photocytotoxicity of mTHPC-loaded micelles in those macrophages. However, we observed release of mTHPC from the micelles in 30 min in blood plasma in vitro which explains the observed similar in vivo pharmacokinetics of the mTHPC micellar formulation and free mTHPC. Therefore, we could not translate the beneficial macrophage selectivity from in vitro to in vivo. Nevertheless, we observed accumulation of mTHPC in atherosclerotic lesions of mice aorta's which is probably the result of binding to lipoproteins upon release from the micelles. Therefore, future experiments will be dedicated to increase the stability and thus allow accumulation of intact mTHPC-loaded Ben-PCL-mPEG micelles to macrophages of atherosclerotic lesions
    corecore