249 research outputs found

    The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect

    Get PDF
    Landscape changes are known to exacerbate the impacts of climate change. As such, understanding the combined effect of climate and landscape on agroecosystems is vital if we are to maintain the function of agroecosystems. This study aimed to elucidate the effects of agricultural landscape complexity on the microclimate and thermal tolerance of an aphid pest to better understand how landscape and climate may interact to affect the thermal tolerance of pest species within the context of global climate change. Meteorological data were measured at the landscape level, and cereal aphids (Sitobion avenae, Metopolophium dirhodum and Rhopalosiphum padi) sampled, from contrasting landscapes (simple and complex) in winter 2013/2014 and spring 2014 in cereal fields of Brittany, France. Aphids were returned to the laboratory and the effect of landscape of origin on aphid cold tolerance (as determined by CTmin ) was investigated. Results revealed that local landscape complexity significantly affected microclimate, with simple homogenous landscapes being on average warmer, but with greater temperature variation. Landscape complexity was shown to impact aphid cold tolerance, with aphids from complex landscapes being more cold tolerant than those from simple landscapes in both winter and spring, but with differences among species. This study highlights that future changes to land use could have implications for the thermal tolerance and adaptability of insects. Furthermore, not all insect species respond in a similar way to microhabitat and microclimate, which could disrupt important predator-prey relationships and the ecosystem service they provide

    Why is there no impact of the host species on the cold tolerance of a generalist parasitoid?

    Get PDF
    For generalist parasitoids such as those belonging to the Genus Aphidius, the choice of host species can have profound implications for the emerging parasitoid. Host species is known to affect a variety of life history traits. However, the impact of the host on thermal tolerance has never been studied. Physiological thermal tolerance, enabling survival at unfavourable temperatures, is not a fixed trait and may be influenced by a number of external factors including characteristics of the stress, of the individual exposed to the stress, and of the biological and physical environment. As such, the choice of host species is likely to also have implications for the thermal tolerance of the emerging parasitoid. The current study aimed to investigate the effect of cereal aphid host species (Sitobion avenae, Rhopalosiphum padi and Metopolophium dirhodum) on adult thermal tolerance, in addition to sex and size, of the aphid parasitoids Aphidius avenae, Aphidius matricariae and Aphidius rhopalosiphi. Results revealed no effect of host species on the cold tolerance of the emerging parasitoid, as determined by CTmin and Chill Coma, for all parasitoid species. Host species significantly affected the size of the emerging parasitoid for A. rhopalosiphi only, with individuals emerging from R. padi being significantly larger than those emerging from S. avenae, although this did not correspond to a difference in thermal tolerance. Furthermore, a significant difference in the size of male and female parasitoids was observed for A. avenae and A. matricariae, although, once again this did not correspond to a difference in cold tolerance. It is suggested that potential behavioural thermoregulation via host manipulation may act to influence the thermal environment experienced by the wasp and thus wasp thermal tolerance and, in doing so, may negate physiological thermal tolerance or any impact of the aphid host

    Hétérogénéité fonctionnelle et biodiversité (quel est le rÎle des interfaces ou lisiÚres dans les paysages agricoles ?)

    Get PDF
    L'hétérogénéité du paysage, définie par la composition en habitats et leur configuration spatiale, est considérée comme un facteur majeur affectant la biodiversité. Cependant, les effets de la composition et de la configuration sont souvent confondus du fait de corrélations entre les descripteurs de ces deux composantes. Il est crucial de déterminer leurs effets indépendants pour comprendre les processus qui contrÎlent la biodiversité, et allouer les ressources dédiées à la conservation des espÚces aux actions de gestion les plus pertinentes. L'objectif de cette thÚse est, grùce à la mise en place de protocoles pseudo-expérimentaux dans l'ouest de la France, d'étudier les effets indépendant de la composition et de la configuration paysagÚre sur la richesse spécifique, la composition spécifique et la composition en traits fonctionnels des coléoptÚres carabiques et plantes vasculaires. Ces indices de diversité ont été mesurés au niveau du paysage (diversité gamma), et différentes représentations paysagÚres ont été testées pour comprendre le rÎle de l'hétérogénéité de l'espace cultivé, au-delà de la seule prise en compte des habitats semi-naturels. Les résultats indiquent que l'hétérogénéité paysagÚre joue un rÎle de filtre écologique sur les espÚces de carabes et de plantes en fonction de leurs traits fonctionnels. La composition paysagÚre affecte la composition spécifique de ces groupes, les divers habitats hébergeant des communautés différentes. La configuration affecte la diversité des carabes en lien avec des processus possibles de complémentation entre habitats, tandis qu'elle n'a pas d'effet sur la diversité des plantes, qui ne semble donc pas déterminée par les processus de dispersion. Enfin, nos résultats soulignent que l'hétérogénéité liée aux habitats agricoles contribue à la diversité gamma.Landscape heterogeneity, defined by habitats composition and their spatial configuration, is considered as one of the main factor affecting biodiversity. However, the effects of landscape composition and configuration are often confounded because of correlations between the descriptors of these two components. It is crucial to separate the effects of compositional and configurational heterogeneity to understand the ecological processes driving biodiversity and to allocate conservation resources to the most effective actions. Mensurative experiments were carried out in western France to assess the independent effects of landscape composition and configuration on species richness, species composition, and functional traits composition of carabid beetles and vascular plants. These diversity indices were measured at landscape level (gamma diversity), and different landscape representations were tested to address the role of the farmland heterogeneity, beyond the semi natural habitat / farmland matrix dominant representation. Results indicate that landscape heterogeneity act as an ecological filter on carabid and plant species according to their functional traits. Landscape composition affects species composition because different communities benefit from the various habitat types. In addition, landscape configuration influences carabid beetles diversity in relationships with possible complementation processes between habitats, but had no effect on plant diversity, suggesting dispersal was not a driving process of plant diversity. Furthermore, we found that the heterogeneity related to cultivated lands contributes to gamma diversity.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    Genetic isolation by distance and landscape connectivity in the American marten ( Martes americana )

    Get PDF
    Empirical studies of landscape connectivity are limited by the difficulty of directly measuring animal movement. ‘Indirect' approaches involving genetic analyses provide a complementary tool to ‘direct' methods such as capture-recapture or radio-tracking. Here the effect of landscape on dispersal was investigated in a forest-dwelling species, the American marten (Martes americana) using the genetic model of isolation by distance (IBD). This model assumes isotropic dispersal in a homogeneous environment and is characterized by increasing genetic differentiation among individuals separated by increasing geographic distances. The effect of landscape features on this genetic pattern was used to test for a departure from spatially homogeneous dispersal. This study was conducted on two populations in homogeneous vs. heterogeneous habitat in a harvested boreal forest in Ontario (Canada). A pattern of IBD was evidenced in the homogeneous landscape whereas no such pattern was found in the near-by harvested forest. To test whether landscape structure may be accountable for this difference, we used effective distances that take into account the effect of landscape features on marten movement instead of Euclidean distances in the model of isolation by distance. Effective distances computed using least-cost modeling were better correlated to genetic distances in both landscapes, thereby showing that the interaction between landscape features and dispersal in Martes americana may be detected through individual-based analyses of spatial genetic structure. However, the simplifying assumptions of genetic models and the low proportions in genetic differentiation explained by these models may limit their utility in quantifying the effect of landscape structur

    æœŹé€šç„Ąç·šç¶Čè·ŻèȘè­‰çł»ç”±ç•°ć‹•

    Get PDF
    Ecological studies need accurate environmental data such as vegetation characterization, landscape structure and organization, to predict and explain the spatial distribution of biodiversity. Few ecological studies use remote sensing data to assess the biophysical or structural properties of vegetation to understand species distribution. To date, synthetic aperture radar (SAR) data have seldom been used for ecological applications. However, these sensors provide data allowing access to the inner structure of vegetation which is a key information in ecology. The objective of this article is to compare the predictive power of ecological habitat structure variables derived from a TerraSAR-X image, an aerial photograph and a SPOT-5 image for species distribution. The test was run with a hedgerow network in Brittany and assessed the spatial distribution of the forest ground carabid beetles which inhabit these hedgerows. The results confirmed that radar and optical images can be indifferently used to extract hedgerow network and derived landscape metrics (hedgerow density, network grain) useful to explain the spatial distribution of forest carabid beetles. In comparison with passive optical remotely sensed data, VHSR SAR images provide new data to characterize vegetation structure and more particularly hedgerow canopy cover, a variable known to explain the spatial distribution of carabid beetles in an agricultural landscape, but not yet quantified at a fine scale. The hedgerow canopy cover derived from the SAR image is a strong predictor of the abundance of forest carabid beetles at two scales i.e., a local scale and a landscape scale

    Agriculture et biodiversité. Valoriser les synergies

    Get PDF
    Que sait-on aujourd'hui des impacts, positifs et nĂ©gatifs, de l’agriculture sur la biodiversitĂ© ? Quels services la biodiversitĂ© peut-elle apporter Ă  l’agriculture, et Ă  quelle hauteur de performance ? Comment favoriser au champ les synergies entre agriculture et biodiversitĂ© ? Quels instruments de politiques publics, Ă©conomiques et juridiques, faut-il mettre en place pour promouvoir ces interactions ? Ces questions ont mobilisĂ© un groupe pluridisciplinaire d’experts (Ă©cologues, agronomes, microbiologistes, spĂ©cialistes de santĂ© vĂ©gĂ©tale, Ă©conomistes, juristes, sociologues), de diffĂ©rentes institutions (Inra, CNRS, IRD, UniversitĂ©s, Ecoles supĂ©rieures agronomiques) en France et Ă  l’étrange

    Response of wild bee diversity, abundance, and functional traits to vineyard inter-row management intensity and landscape diversity across Europe

    Get PDF
    Agricultural intensification is a major driver of wild bee decline. Vineyards may be inhabited by plant and animal species, especially when the inter-row space is vegetated with spontaneous vegetation or cover crops. Wild bees depend on floral resources and suitable nesting sites which may be found in vineyard inter-rows or in viticultural landscapes. Inter-row vegetation is managed by mulching, tillage, and/or herbicide application and results in habitat degradation when applied intensively. Here, we hypothesize that lower vegetation management intensities, higher floral resources, and landscape diversity affect wild bee diversity and abundance dependent on their functional traits. We sampled wild bees semi-quantitatively in 63 vineyards representing different vegetation management intensities across Europe in 2016. A proxy for floral resource availability was based on visual flower cover estimations. Management intensity was assessed by vegetation cover (%) twice a year per vineyard. The Shannon Landscape Diversity Index was used as a proxy for landscape diversity within a 750 m radius around each vineyard center point. Wild bee communities were clustered by country. At the country level, between 20 and 64 wild bee species were identified. Increased floral resource availability and extensive vegetation management both affected wild bee diversity and abundance in vineyards strongly positively. Increased landscape diversity had a small positive effect on wild bee diversity but compensated for the negative effect of low floral resource availability by increasing eusocial bee abundance. We conclude that wild bee diversity and abundance in vineyards is efficiently promoted by increasing floral resources and reducing vegetation management frequency. High landscape diversity further compensates for low floral resources in vineyards and increases pollinating insect abundance in viticulture landscapes.AustrianScienceFund,Grant/AwardNumber:I2044-B25;BundesministeriumfĂŒrBildungundForschung;UnitateaExecutivapentruFinantareaInvatamantuluiSuperior,aCercetarii,DezvoltariisiInovarii;MinisteriodeEconomĂ­ayCompetitividad;AgenceNationaledelaRecherchePeer Reviewe

    Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions

    Get PDF
    International audienceAgricultural landscape homogenization has detrimental effects on biodiversity and key ecosystem services. Increasing agricultural landscape heterogeneity by increasing seminatural cover can help to mitigate biodiversity loss. However, the amount of seminatural cover is generally low and difficult to increase in many intensively managed agricultural landscapes. We hypothesized that increasing the heterogeneity of the crop mosaic itself (hereafter “crop heterogeneity”) can also have positive effects on biodiversity. In 8 contrasting regions of Europe and North America, we selected 435 landscapes along independent gradients of crop diversity and mean field size. Within each landscape, we selected 3 sampling sites in 1, 2, or 3 crop types. We sampled 7 taxa (plants, bees, butterflies, hoverflies, carabids, spiders, and birds) and calculated a synthetic index of multitrophic diversity at the landscape level. Increasing crop heterogeneity was more beneficial for multitrophic diversity than increasing seminatural cover. For instance, the effect of decreasing mean field size from 5 to 2.8 ha was as strong as the effect of increasing seminatural cover from 0.5 to 11%. Decreasing mean field size benefited multitrophic diversity even in the absence of seminatural vegetation between fields. Increasing the number of crop types sampled had a positive effect on landscape-level multitrophic diversity. However, the effect of increasing crop diversity in the landscape surrounding fields sampled depended on the amount of seminatural cover. Our study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production

    New Antibody-Free Mass Spectrometry-Based Quantification Reveals That C9ORF72 Long Protein Isoform Is Reduced in the Frontal Cortex of Hexanucleotide-Repeat Expansion Carriers

    Get PDF
    Frontotemporal dementia (FTD) is a fatal neurodegenerative disease characterized by behavioral and language disorders. The main genetic cause of FTD is an intronic hexanucleotide repeat expansion (G4C2)n in the C9ORF72 gene. A loss of function of the C9ORF72 protein associated with the allele-specific reduction of C9ORF72 expression is postulated to contribute to the disease pathogenesis. To better understand the contribution of the loss of function to the disease mechanism, we need to determine precisely the level of reduction in C9ORF72 long and short isoforms in brain tissue from patients with C9ORF72 mutations. In this study, we developed a sensitive and robust mass spectrometry (MS) method for quantifying C9ORF72 isoform levels in human brain tissue without requiring antibody or affinity reagent. An optimized workflow based on surfactant-aided protein extraction and pellet digestion was established for optimal recovery of the two isoforms in brain samples. Signature peptides, common or specific to the isoforms, were targeted in brain extracts by multiplex MS through the parallel reaction monitoring mode on a Quadrupole–Orbitrap high resolution mass spectrometer. The assay was successfully validated and subsequently applied to frontal cortex brain samples from a cohort of FTD patients with C9ORF72 mutations and neurologically normal controls without mutations. We showed that the C9ORF72 short isoform in the frontal cortices is below detection threshold in all tested individuals and the C9ORF72 long isoform is significantly decreased in C9ORF72 mutation carriers
    • 

    corecore