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Abstract

Empirical studies of landscape connectivity are limited by the difficulty of directly measuring animal
movement. ‘Indirect’ approaches involving genetic analyses provide a complementary tool to ‘direct’
methods such as capture–recapture or radio-tracking. Here the effect of landscape on dispersal was inves-
tigated in a forest-dwelling species, the American marten (Martes americana) using the genetic model of
isolation by distance (IBD). This model assumes isotropic dispersal in a homogeneous environment and is
characterized by increasing genetic differentiation among individuals separated by increasing geographic
distances. The effect of landscape features on this genetic pattern was used to test for a departure from
spatially homogeneous dispersal. This study was conducted on two populations in homogeneous vs. het-
erogeneous habitat in a harvested boreal forest in Ontario (Canada). A pattern of IBD was evidenced in the
homogeneous landscape whereas no such pattern was found in the near-by harvested forest. To test whether
landscape structure may be accountable for this difference, we used effective distances that take into account
the effect of landscape features on marten movement instead of Euclidean distances in the model of isolation
by distance. Effective distances computed using least-cost modeling were better correlated to genetic dis-
tances in both landscapes, thereby showing that the interaction between landscape features and dispersal in
Martes americana may be detected through individual-based analyses of spatial genetic structure. However,
the simplifying assumptions of genetic models and the low proportions in genetic differentiation explained
by these models may limit their utility in quantifying the effect of landscape structure.

Introduction

The concept of landscape connectivity was intro-
duced to designate the interaction between

landscape structure and movement (Taylor et al.
1993). This interaction may strongly affect dis-
persal (the movement that an individual makes
between its place of birth and the place where it
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reproduces), a critical process shaping the evolu-
tion of populations (Wiens 2001). How to quantify
connectivity remains a subject of debate (Tis-
chendorf and Fahrig 2000, 2001; Moilanen and
Hanski 2001; Goodwin and Fahrig 2002), but a
number of approaches require some information
on movement or immigration/emigration rates.
However, empirical studies of animal movement
are often severely constrained by inherent practical
difficulties (e.g. limited sample sizes, extensive field
work, cost of equipment, limited study area).
‘Indirect’ approaches of dispersal involving genetic
analyses have proved increasingly useful in the
recent past (reviewed in Neigel 1997; Rousset
2001a, b). A number of genetic methods in fact
allow estimating either dispersal rates or distances
and seem to provide suitable complementary tools
to ‘direct’ methods. A genetic approach may
therefore allow investigating the interaction of
landscape features with dispersal (Castric et al.
2001; Hale et al. 2001; Michels et al. 2001; Vos
et al. 2001; Arnaud 2003; Coulon et al. 2004).

In continuous populations with spatially limited
dispersal, levels of gene flow tend to decrease with
increasing geographic distances, which results in
increasing genetic differentiation among individ-
uals. This process called ‘isolation by distance’
(Wright 1943) may be detected by analysing the
distribution of pair-wise estimates of genetic dis-
tances between individuals (Rousset 2000). Under
a model of isolation by distance assuming genetic
equilibrium (equilibrium between the genetic var-
iability introduced by mutations and gene flow
and lost through genetic drift at each generation:
Rousset 2004, Chap. 3), the relationship between
genetic and geographic distances allows estimat-
ing some demographic parameters (effective pop-
ulation density and/or dispersal distance) in the
focal species (Hardy and Vekemans 1999; Rousset
2000; Hardy 2003). Another interesting property
of this model is that it assumes that individuals
disperse equally in all directions in a homoge-
neous environment. Conversely, the effect of the
topography of the landscape on dispersal would
cause a departure from isolation by distance
(Coulon et al. 2004). Setting this model as null
hypothesis, the effect of the connectivity of the
landscape on dispersal may hence be tested in a
continuous population framework through anal-
yses of population genetic structure (Epperson
2003, p. 3, 31).

The American marten (Martes americana) is a
mid-sized mustelid carnivore species inhabiting
North-American forests. This species is mostly
found in the Canadian boreal forest, where its
habitat has been best preserved. Martes americana
is a presumptive forest indicator species (Watt
et al. 1996) typically associated with mature forest
systems providing high prey availability and
abundant shelter and predator-escape cover (Bus-
kirk and Powell 1994). Very few data on marten
movement are available in the literature, and
conditions of dispersal remain unclear (but see
Fecske and Jenks 2002). A complementary
approach of dispersal employing direct and indi-
rect methods has shown that the fine-scale popu-
lation genetic structure of marten differed between
optimal vs. fragmented habitats (Broquet et al. in
press). A pattern of isolation by distance between
individuals was evidenced in a sample of individ-
uals inhabiting a landscape dominated by old-
growth forest of fire origin (presumed optimal
habitat), whereas no such pattern was found in a
near-by more fragmented forest. The present study
aims at testing whether the structure of the land-
scape may be accountable for altered dispersal in
the fragmented landscape, thereby explaining the
lacking isolation by distance pattern in this land-
scape. Some environmental features may in fact
facilitate or impede marten movement in such a
way that the straight-line geographic distance
between individuals can not correctly describe the
actual path of dispersal. This hypothesis is tested
by looking for isolation by distance using some
‘effective’ distances taking into account the effect
of landscape structures on marten movement
instead of straight-line geographic distances
between individuals.

Considering a number of landscape features
interacting with marten movement, the effective
distance between two individuals may be repre-
sented by the length of the most likely path that an
individual would follow to join the other one. This
path avoiding some elements of the landscape
more resistant to movement and preferentially
going through more permeable features can be
approximated by the path minimizing the sum of
the ‘costs’ of every feature crossed on the way
(Chardon et al. 2003; Verbeylen et al. 2003). In
this study, least-cost modeling was used to deter-
mine such paths among individuals. The length of
these paths was then used to test for isolation by
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distance in two contrasted landscapes in order to
assess whether landscape connectivity affects gene
flow in Martes americana. An additional aim of
this study was to investigate the robustness of
combining least-cost modeling and genetic analy-
ses in connectivity studies. Accordingly, we tested
for the effect of the arbitrary choice of resolution
of grid-based representations of landscapes
employed in least-cost modeling on the resulting
effective distances and on their correlation with
genetic distances. Hence, the objectives of this
study were: (i) to test whether the structure of the
landscape may be accountable for differing
dispersal in M. americana and (ii) to assess the
robustness and limits of least-cost IBD models.

Methods

Study area

The study site was located in a black spruce/jack
pine-dominated boreal forest in the region of Ear
Falls (50�38¢ N, 93�13¢ W), northwestern Ontario,
Canada (Figure 1). The study area was divided
into two landscapes differing in harvesting history
(hereafter referred to as ‘logged’ and ‘unlogged’
landscapes). The unlogged landscape (ca.
500 km2) was dominated by old-growth forest of
fire origin, whereas the logged landscape (ca.
800 km2) was composed of regenerating forest,
with a mixture of second-growth stands of differ-
ent ages and types.

Sampling and microsatellite analyses

Martens were live-trapped in both landscapes in
2001, 2002 and 2003. Live-trapping and handling
procedures are described in Broquet et al. (in
press). Trapping locations were recorded using a
hand held GPS (accuracy 5–10 m). Samples of hair
were taken on every live-trapped individual and
used as a source of DNA for the genetic analyses.
A set of seven microsatellite markers (hyper-vari-
able nuclear DNA sequences: Avise 2004, p. 92)
previously isolated by Davis and Strobeck (1998)
were used to examine the spatial distribution of
genetic variability. Conditions of DNA extraction
and genotyping are described in Broquet et al. (in
press). Expected heterozygosity (He) and allelic

richness per locus (A) were calculated for each
population using the software FSTAT (Goudet
1995, 2001).

Genetic distance between individuals

A hierarchical analysis of marten genetic structure
in the study area revealed an homogeneous genetic
composition within each landscape, and little but
significant divergence between landscapes (Bro-
quet 2004). Accordingly, the two landscapes were
considered as distinct populations, and the genetic
structure used in this paper is based on the spatial
distribution of genetic variation among individu-
als, as described in Broquet et al. (in press).
Genetic distances between individuals (a) were
computed with the program SPAGeDI (Hardy
and Vekemans 2002).

Euclidean distance between individuals

Pair-wise Euclidean distances (r) correspond to
straight-line geographic distances between pairs of
individuals. These distances were calculated in
Arcview 3.2 (Environmental Systems Research
Institute, Redlands, USA) using Universal Trans-
verse Mercator (UTM) coordinates of the original
capture site of each individual.

Effective distance between individuals

The least-cost modeling procedure involves two
steps (see Adriaensen et al. 2003; Chardon et al.
2003; Verbeylen et al. 2003 for a detailed descrip-
tion). First, the landscape is modeled as a friction
map (grid) describing the resistance to marten
movement of each type of land cover. Second, a
least-cost algorithm is used to determine the least-
cost path between locations. Friction maps for the
logged and the unlogged landscapes were built
from forest resource inventory (FRI) digital maps,
which provide detailed descriptions of timber
resources (e.g. stand age and species composition)
and other types of land cover (e.g. water areas,
swamps). Because least-cost modeling is based on
a grid-based representation of landscapes (array of
equal-size square cells), we first converted FRI
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maps into raster grids using the Arcview module
Spatial Analyst 1.1. The effect of the choice of
resolution on least-cost modeling and on the
relationship between genetic and effective dis-
tances was investigated by repeating the procedure

with six resolutions (grid cell sizes of 10, 25, 50, 75,
100 and 500 m) for the friction map of the logged
landscape. The raster representation of the
unlogged landscape was then built using a reso-
lution of 75 m.

Figure 1. The study area located near Ear Falls, Ontario (50�38¢ N, 93�13¢ W), was divided into an ‘unlogged’ (above) and a ‘logged’

(below) landscape located approximately 50 km apart. White areas represent old-growth forest of fire-origin and regenerating stands

�20 years old. Younger forest stands and unforested areas are represented in grey. Black dots represent original trapping sites of 118

and 73 American marten live-trapped in the unlogged and the logged landscapes, respectively.
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The choice of cell values depicting local resis-
tance to marten movement was based on existing
knowledge of marten biology. Martes americana
avoids unforested areas such as clear-cuts and
lakes, as well as young or unproductive stands
presenting a low forest cover (Soutiere 1979;
Buskirk and Powell 1994; Payer and Harrison
2003; Poole et al. 2004). Very little is known on
the relative permeability of other forest stands
varying in ages and dominant tree species.
Accordingly, we used a simplistic distribution of
friction values to build the raster maps of the
study site. Each cell of unforested area (recent
clear-cut, lake or road) or of young forest stand
regenerating from logging (<20 years old) was
given a friction coefficient of 50, while the friction
of every other type of land cover (forested areas)
was unchanged (friction coefficient = 1). These
values were arbitrarily chosen such as to allow
narrow elements (e.g. <100 m) like rivers, roads
or small clear-cuts to be easily crossed while large
unforested areas (e.g. >1 km) would always be
skirted (accordingly to observations of marten
movement realized during this study). These
coefficients were chosen in such a way that the
sum of costs of a straight-line crossing a large non-
permeable area would necessarily be higher than
the sum of costs along the path going around this
zone. Conversely, linear structures like roads
would easily be crossed since the sum of costs of a
path trying to avoid crossing roads would become
very high.

Least-cost paths were computed with the pro-
gram Pathmatrix (Ray 2004). Pathmatrix uses a
friction map representing the cost of movement for
a given species and applies the ‘cost distance’
algorithm implemented in Arcview 3.2 to minimize
the sum of resistances of all cells along the path
between pairs of locations. Here, effective dis-
tances were not measured as the total sum of costs
along the paths (‘least-cost distance’ sensu stricto),
but as the lengths of the least-cost paths between
each pair of individuals.

Relationship between genetic and geographic
distances

Local polynomial regression (Cleveland et al.
1992) may be used to visualize the spatial distri-
bution of genetic divergence produced by large

pair-wise data sets (Coulon et al. 2004). The
software R 2.0.1 (R Development Core Team
2005) was used to compute smoothed curves based
on local polynomial regressions of pair-wise
genetic distance against Euclidean or effective
distances (polynomial regression of second degree
fitted locally at 50 evaluation points using 2/3 of
the total number of points) following Coulon
et al. (2004). The null hypothesis of isolation by
distance is characterized by the linear relationship
between pair-wise genetic distances and the loga-
rithm of geographic distances (Rousset 1997,
2000). This relationship was tested using Mantel
tests based on 10,000 permutations implemented
in FSTAT. Because under isolation by distance
this linear relationship is expected to hold best at
distances greater than the effective dispersal dis-
tance (r) in the population (Rousset 1997, 2000),
regressions were performed using only pair-wise
comparisons for individuals separated by a dis-
tance �3.8 km (value of r estimated for M.
americana in the unlogged landscape: Broquet
et al. in press). To do so, all points corresponding
to pair-wise effective geographic distance data for
individuals closer than 3800 m (i.e. ln(r) <8.24)
were given the genetic and geographic values of
the barycentre of all other points. This transfor-
mation allows removing from the distance matri-
ces all variability introduced by the data points
that should not be included in the analysis. The
transformed matrices were then used in the
Mantel tests.

Landscape connectivity

The resistance of landscape to movement along
least-cost paths may be represented by the resid-
uals of the regression of effective distances against
Euclidean distances (Verbeylen et al. 2003). These
residuals therefore express the effect of landscape
features independently of the effect of distance.
The software R (version 2.0.1) was used to regress
effective distances against Euclidean distances in
the logged and the unlogged landscapes, and
residuals were plotted against Euclidean distances
to visualize and compare the overall connectivity
of each landscape. The distribution of the standard
deviation of these residuals was also plotted to
visualize the effect of landscape heterogeneity in
logged vs. unlogged landscapes.
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Results

Sampling and genetic variability

A total of 191 marten (nUnlogged = 118,
nLogged = 73) were sampled. The gene diversity
and allelic richness of the seven microsatellite
markers used in this study to investigate the
genetic structure of marten populations respec-
tively found in the logged and the unlogged land-
scapes are presented in Table 1.

Effective distance between individuals

Pair-wise least-cost paths computed using friction
maps of different resolutions appeared to differ in
shape and length. The permeability of local land-
scape structures was highly dependent on the
resolution of friction maps (Figure 2). However
the global evolution of effective distances against
Euclidean distances did not differ among resolu-
tions, except for the largest grid cell size (500 m),
which led to slightly lower effective distances than
obtained at finer resolutions (Figure 3). The choice
of the resolution for the friction maps used to
model the resistance of the landscape to marten
movement nonetheless greatly influenced the
results of least-cost modeling and the ensuing
relationship between genetic distances and effect-
ive distances (see below).

Relationship between genetic and geographic
distances

Pair-wise genetic distances among individuals in the
unlogged landscape were significantly correlated

with both the Euclidean and the effective distances
between individuals (Table 2). In this landscape, the
polynomial regressions based on Euclidean and
effective distances showed very similar patterns
illustrating the increase of genetic differentiation
with increasing geographic distance characteristic
of isolation by distance (Figure 4a, b). In contrast,
genetic distances among individuals in the logged
landscape were correlated only with effective dis-
tances (Table 2), and polynomial regressions based
on Euclidean vs. effective distances, respectively,
showed opposite trends (Figure 4c, d). However,
the pattern of isolation by distance detected in the
logged landscape using effective distances wasmuch
less pronounced than in the unlogged landscape
(Figure 4b, d).

In all cases, the proportion of variance (R2)
explained by the model was very low. This is an
expected results from IBD, where genetic drift and
sampling error in individual genetic estimators
result in high variance in spatial genetic structure.
However, the regression of genetic vs. geographic
distances is biologically meaningful as it directly
depends on the distribution of dispersal distance.

Landscape connectivity

The residuals of the regression of effective dis-
tances on Euclidean distances express the net
effect, i.e. independent of the effect of distance, of
landscape structures on simulated marten paths
(Figure 5). The distribution of these residuals
against Euclidean distances drastically differed
between the unlogged (Figure 5a) and the logged
landscape (Figure 5b). In the logged landscape,
the residuals were much more dispersed and their
variance increased more rapidly with increasing
Euclidean distances.

Discussion

Correlation between genetic and geographic
distances

In homogeneous environments, spatially limited
dispersal causes an increase in genetic differentia-
tion among individuals separated by increasing
geographic distances. This isolation by distance
was revealed in the unlogged landscape by the

Table 1. Summary of genetic diversity at seven microsatellite

loci in two American marten populations inhabiting contrasting

landscapes; allelic richness (A); expected heterozygosity (He).

Locus forest Logged forest

A He A He

Ma2 5.0 0.726 5.9 0.693

Ma5 7.0 0.781 6.0 0.719

Ma8 7.7 0.795 7.0 0.794

Ma9 4.0 0.647 4.0 0.592

Ma11 3.0 0.540 4.0 0.550

Ma19 6.8 0.777 6.9 0.752

Gg7 7.0 0.717 8.0 0.764
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Figure 2. Effect of the resolution of friction maps on the length of the least-cost path between two individuals of American marten

(dots connected by black line) in the logged landscape. Cell size for maps a–f is 10, 25, 50, 75, 100 or 500 m. Black arrows on maps c

and d show an example of a structure acting as a barrier or as a permeable element, respectively, depending on the resolution adopted.

Accordingly, the resulting length of the least-cost path was decreased (e.g. from c to d) or increased (e.g. from d to e) with decreasing

resolution.
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relationship observed between pair-wise genetic
and Euclidean distances. Such a correlation was
also detected in the logged landscape, but only by
replacing Euclidean distances by effective dis-
tances, which took the effect of landscape struc-
tures on marten movement into account. This
result supported the hypotheses that gene flow in
Martes americana is affected by landscape features
and that this interaction may be detected through
individual-based analyses of spatial genetic
structure.

Whether the effect that we observed in the
present study was caused by current or older
landscape configuration remains an open question.
In the logged landscape, the forest harvested dur-
ing the last 40 years (�20 generations of marten)
represented 20% of the total area, whereas other

perturbations were older. Depending on the rate of
evolution of IBD, it is possible that the most recent
alterations of the landscape did not yet affect
marten spatial genetic structure. However, Leblois
et al (2004) showed that strong temporal hetero-
geneity in dispersal had a limited influence on the
estimation of current demographic parameters
from IBD pattern. Modeling studies investigating
the rate of evolution of IBD in response to
modifications in dispersal would help identifying
relevant landscape features in such landscape
genetics approaches.

Similar results were recently obtained by
Coulon et al. (2004) in a study of connectivity in
roe deer (Capreolus capreolus). They computed
least-cost distances using a slightly different
modeling approach based on the distribution of
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Figure 3. Evolution of effective distances against Euclidean distances calculated for 73 individuals of American marten in the logged

landscape using different resolutions of friction map. Resolution is expressed as grid cell size.

Table 2. Correlation between genetic and geographic distances in the unlogged and the logged landscapes in two American marten

populations.

Landscape Distance Grid cell size (m) Size of the friction mapa pb R2c

Unlogged Euclidean – – 0.0001 0.0032

Effective 75 315· 277 0.0001 0.0043

Logged Euclidean – – 0.438 0.0002

Effective 10 2273· 3473 0.061 0.0013

25 909· 1389 0.088 0.0011

50 455· 695 0.068 0.0013

75 303· 463 0.026 0.0019

100 227· 347 0.050 0.0015

500 45 · 69 0.071 0.0012

Pair-wise effective distances in the unlogged landscape were calculated using a resolution of 75 m (grid cell size), whereas six resolutions

were used in the logged landscape.
aThe size of friction maps is reported as number of rows· number of columns for each resolution.
bp-Values were calculated using 10,000 permutations in Mantel tests.
cR2 expresses the proportion of variance in genetic distances explained by the variation in geographic distance.
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wooded habitat and obtained a better correlation
of genetic distances with least-cost distances than
with Euclidean distances. Implicitly setting iso-
lation by distance as the null hypothesis, they
concluded that the distribution of wooded habi-
tat determines movement pathways during roe
deer dispersal. Several other studies had previ-
ously demonstrated that the interaction of land-
scape structure on dispersal may be evidenced in
a metapopulation framework by investigating the
relationship between genetic differentiation

among populations and a variety of indices of
structural or functional connectivity among
habitat patches (Castric et al. 2001; Hale et al.
2001; Michels et al. 2001; Vos et al. 2001;
Arnaud 2003). The present paper confirms the
previous results of Coulon et al. (2004) suggest-
ing that the expected spatial genetic structure
characterizing isolation by distance between
individuals may also be used as a null model to
detect the effect of habitat structure on dispersal
within populations.

Figure 4. Smoothed curves of local polynomial regression of pair-wise genetic distances against geographic distances in the unlogged

(a, b) and the logged landscape (c, d), respectively, using Euclidean (a, c) or effective (b, d) distances in American marten (for details of

curve fitting see text).
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Landscape connectivity and genetic
isolation by distance

We described connectivity in Martes americana in
two different ways. First, least-cost modeling was
used to compute effective distances including
available knowledge of marten movement behav-
iour. The length of least-cost paths was then used
as a measure of the functional connectivity
between individuals within a population
(Adriaensen et al. 2003). This measure character-
izes pairs of individuals (or locations), therefore
differing from patch-based (Hanski 1999; D’Eon
et al. 2002) and landscape-based measures of
connectivity (Tischendorf and Fahrig 2000).

Second, a descriptive analysis of the residuals
of effective distances against Euclidean distances
was used to visualize differences in connectivity
between landscapes and their effect on genetic
isolation by distance. These residuals express the
net effect of landscape structure, independently of
the straight-line distance between data points
(Adriaensen et al. 2003; Verbeylen et al. 2003). A
visual inspection of the scatterplot of residuals vs.
Euclidean distances revealed the drastic difference
in overall connectivity in logged vs. unlogged
landscapes (Figure 5). In the logged landscape the
variance of the residuals (hence the variance of
the effect of landscape structure) was higher than
in the unlogged, and this variance increased much
more rapidly with increasing geographic dis-
tances. The variance of the residuals illustrates
the fact that pairs of individuals separated by
similar Euclidean distances may be differentially
affected by the structure of the landscape and,
therefore, that the effective distances between
pairs of points may be very different. The evo-
lution of the variance of the residuals in logged
vs. unlogged landscapes showed that this differ-
ential effect is much stronger in the logged land-
scape and supports the hypothesis that the
pattern of isolation by distance obtained using
effective distances in the logged landscape was
due to the differential reclassification of indi-
viduals originally separated by similar Euclidean
distances. Such differences in reclassification were
more limited in the unlogged landscape, which is
more homogeneous, but nonetheless contributed
to increase slightly the strength of the pattern of
isolation by distance.

Effect of resistance values and resolution
of friction maps

In this paper the functional connectivity between
pairs of individuals was treated as an independent
variable (Goodwin 2003) and examined by relying
on somewhat arbitrary choices of resistance values
and resolution of friction maps. These two
parameters were set in order to simulate marten
paths according to field observations, and were
both shown to have a great impact on the overall
correlation between genetic vs. effective distances.

Resistance coefficients set to 1 for forested areas
and 50 for other types of land cover and recently
cut forest stands were chosen such as to obtain the
presumptive, most likely pathways between pairs
of locations. A strong modification of these values
would have led to unrealistic least-cost paths. For
instance, two other scenarios tested in this study
(1/20 and 1/100), respectively, permitted pathways
to cross large areas of unforested areas or con-
strained pathways to follow large detours to avoid
narrow rivers or roads. Such paths are unrealistic
regarding available information on marten dis-
persal (see Material and methods). The first
scenario led to effective distances similar to
straight-line distances, whereas the second led to
extremely long and sinuous paths. As expected, the
effective distances obtained using these resistance
values were not significantly correlated with pair-
wise genetic distances (data not shown). Only by
using independent data on dispersal behaviour in
heterogeneous environments, we could determine
evidence-based rather than arbitrary friction val-
ues. However, such data are very difficult to obtain
in secretive species. Delineating friction values
based on an index of habitat quality as determined
by presence–absence or abundance data would be
a first step in this direction, provided landscape
permeability to dispersal can be approximated
from habitat quality.

At first sight the choice of resolution seems to be
less arbitrary. Adriaensen (2003, p. 242) pointed
out that one may fail to detect the effect of bio-
logically significant small elements in the land-
scape if the resolution is too coarse (large grid cell
size), suggesting that ‘grid cell size must be clearly
smaller than the width of the narrowest element in
the landscape’. However in our study, the finest
resolutions appeared to reduce the correlation
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between effective and genetic distances. The cho-
sen resolution determined whether small elements
were considered biologically significant or not
(simply by representing them on the map or not).
For example, in contrast to a large lake, a river is
unlikely to constitute a barrier for a dispersing
marten (considering that all water areas are frozen
in winter in our study area). But if all cells repre-
senting water areas are given a particular resis-
tance value, then the resolution may determine
whether rivers are represented or not, and there-
fore whether rivers are considered biologically
significant. A more precise distribution of resis-
tance values would definitely constitute a better
way to represent landscape elements (e.g. by
defining the resistance value of landscape features
not only according to land cover but also
according to their width, shape and orientation
relative to other elements). More information
about individual marten behaviour in the wild (e.g.
through fine-scale radio-tracking) would hence be
required to improve the precision of landscape
models.

Effective distances

The effect of the landscape on marten ability to
move was represented using the length of least-cost
paths as effective distances between locations.
Although functional, this measure of connectivity
is incomplete since it does not encapsulate other
important parameters such as the species’ habitat
preferences (probability of settlement) and risk of
mortality. Both of these factors are likely to have
an impact on successful dispersal in M. americana
and, thereby, on the resultant spatial genetic
structure. In this species, the selection of resting
sites is very important and may drive successful
dispersal (Buskirk et al. 1989). Moreover, a
modeling study of dispersal also demonstrated
that the spatial arrangement of habitats strongly
affected the fate of dispersing marten, and not only
the way they move (Gardner and Gustafson 2004).
Hence, it is likely that a functional measure of
connectivity taking into account these parameters
would be more informative than the length of
least-cost paths. The total sum of costs along the
least-cost path (generally referred to as ‘least-cost
distance’) could potentially constitute such a
measure (Chardon et al. 2003). For example,

Verbeylen et al. (2003) reported that the presence/
absence of red squirrels was better explained by
least-cost distances than by the length of least-cost
paths. However, the biological meaning of least-
cost distances remains largely unclear (it may
integrate a number of factors such as energy
expended, predation risks, intraspecific
interactions).

Assessing landscape connectivity using genetic
markers

In this study, we showed that the individual-based
spatial genetic structure of Martes americana
populations was affected by the connectivity of the
landscape. May spatial patterns of genetic struc-
ture be used to detect and quantify the effect of
landscape features on dispersal?

The use of analyses of genetic structure to
quantify the effects of landscape structure may
prove very useful, especially regarding species in
which direct investigations of dispersal remains
hardly realizable. In fact, empirical measures of
functional connectivity at the landscape scale or in
the context of meta-populations were generally
realized using insects, amphibians or small mam-
mals as model species, and modeling approaches
remain preponderant in the literature (reviewed in
Goodwin 2003). Genetic analyses provide a
promising complementary approach to this prob-
lem. However, several points regarding this land-
scape genetic approach have to be considered.

First, the genetic models that may be used nec-
essarily rely on simplifying demographic assump-
tions. In this paper for instance, setting isolation by
distance as the null hypothesis implies that the focal
population is at drift-dispersal-mutation equilib-
rium (but see Leblois et al. 2004). In a study of
genetic diversity in the Brook charr (a salmonid fish
species), Castric et al. (2001) showed that non-
equilibrium conditions may hinder detecting the
effects of landscape structures on genetic patterns.
Assessing the effect of landscape structures on dis-
persal using a genetic model, therefore, implies that
every other parameter of the model is controlled
for, which may not be easily verified in any case.

Second, assessing the relative effects of a num-
ber of landscape features using genetic isolation by
distance would require being able to test for the
effect of various landscape models and evaluate
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their relative relevance. In this study, the results of
the Mantel test indicated that the logging history
of the landscape played a preponderant role on
marten gene flow. However, only the proportion
of variance explained by the model could poten-
tially help distinguishing between various land-
scape models. Under isolation by distance models,
this proportion is expected to be very low (Rousset
2000; Sumner et al. 2001; Fenster et al. 2003;
Coulon et al. 2004), and it is not obvious whether
one could select the best model in a range of
landscape models based on R2.

Finally, dispersal polymorphism may induce an
additional level of complexity. Dispersal depen-
dent on age or social conditions as well as sex-
biased dispersal are common features in many
taxa, and there is growing evidence for other
sources of behavioural polymorphism such as
natal experience (Davis and Stamps 2004), public
information (Danchin et al. 2001) or individual
decision on short vs. long-distance dispersal
(Selonen 2004). Landscape features may hence
have different effects on different individuals
within a species. Using genetic isolation by dis-
tance between individuals, Coulon et al. (2004)
distinguished between the effects of landscape
features on male and female roe deer. In Martes
americana, Steventon and Major (1982) suggested
that movement patterns in males and females is
differentially affected by the presence of clear-cuts.
Individual-based approaches could potentially
allow testing for such effects. But how much of this
complexity may be perceived using genetic models
has yet to be explored.
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