297 research outputs found

    Comparison of RANS, DES and DDES Results for ONERA M-6 Wing at Transonic Flow Speed Using an In-House Parallel Code

    Get PDF
    The very first thought that comes to the mind with the application area of the DES and DDES schemes is a massively separated flow with highly unsteady flowfield. However, for various complex three dimensional cases, there is no prior knowledge of the flowfield in the domain and it may have mild separation or no separation at all with a steady domain. This study is carried out to see that what will be the behaviour of the DES and DDES schemes in comparison with the URANS scheme if they are applied to a steady state case. An in-house mpi code DG-DES is used for the present study. Three different flux computational schemes named Roe, AUSM and HLLC schemes within DES formulation are compared to check the response for the flows without massive separation and unsteadiness. The cases are run in both single and double precision mode for DES formulation using Roe flux computational scheme to appreciate the accuracy of the solver. A good comparison of pressure distribution with the experimental data is obtained for all URANS, DES and DDES simulations. The pressure distribution results for DES scheme using single and double precision agree well with the experimental data. The pressure distribution predicted by DES using Roe, AUSM and HLLC schemes agree well with the experimental data. The computed values of Cl and Cd are also in close approximity to the other studies. The drag predicted by all DES and DDES simulations is lower than the URANS scheme. It indicates that the DES and DDES schemes generate lower dissipation due to switching to the LES mode and hence result in lower drag prediction as compared with the URANS solution. There is no anomaly observed in the flow due to the use of DES or DDES for steady flow case

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Rapid in situ imaging and whole genome sequencing of biofilm in neonatal feeding tubes: a clinical proof of concept

    Get PDF
    The bacterial flora of nasogastric feeding tubes and faecal samples were analysed for a low-birth weight (725g) neonate EGA 25 weeks in intensive care. Samples were collected at age 6 and 8 weeks of life. Optical coherence tomography (OCT) was used to visualise bacterial biofilms inside the nasogastric feeding tubes. The biofilm was heterogeneously distributed along the tube lumen wall, and had a depth of up to 500µm. The bacterial biofilm and faecal samples included Enterococcus faecalis and Enterobacter hormaechei. Representative strains, recovered from both feeding tubes and faecal samples, were whole genome sequenced using Illumina, Mi-Seq, which revealed indistinguishable strains, each with less than 28 SNP differences, of E. faecalis and E. hormaechei. The E. faecalis strains were from two sequence types (ST191 and ST211) and encoded for a number of traits related to biofilm formation (BopD), adherence (Epb pili), virulence (cps loci, gelatinase, SprE) and antibiotic resistances (IsaA, tetM). The E. hormaechei were all ST106, and encoded for blaACT-15 β–lactamase and fosfomycin resistance (fosA). This proof of concept study demonstrates that bacterial flora within the neonatal feeding tubes may influence the bacterial colonisation of the intestinal tract and can be visualised nondestructively using OCT

    Treatment of non-small-cell lung cancer: a perspective on the recent advances and the experience with gefitinib

    Get PDF
    Worldwide, non-small-cell lung cancer (NSCLC) is a leading cause of cancer-related mortality and, until screening detects early disease, treatment for the majority of patients will consist of radiation therapy, chemotherapy or combinations thereof. Modern mono and doublet chemotherapy regimens have translated into modest increases in life expectancy and improved quality of life, but at the expense of systemic and pulmonary adverse events (AEs). There is a great unmet need to provide effective therapy for advanced NSCLC that does not have the toxicity burden of conventional chemotherapy and radiotherapy. Novel drugs that inhibit a range of growth factor receptors, such as the epidermal growth factor receptor tyrosine kinase inhibitors gefitinib (‘Iressa’) and erlotinib (‘Tarceva’) or the monoclonal antibody cetuximab (‘Erbitux’), have recently been evaluated. Having demonstrated antitumour activity and rapid symptom improvement in pretreated patients with advanced NSCLC, gefitinib was approved in the USA, Japan and other countries. Gefitinib is well tolerated with a low incidence of grade 3/4 AEs. Interstitial lung disease has been reported in a small number of patients receiving gefitinib, although this may be attributed to other treatments and conditions. Nevertheless, although the use of novel treatments requires vigilance for unexpected AEs such as pulmonary toxicity, in this area of high unmet clinical need, the benefits outweigh the risks in patients for whom no other proven effective treatment exists

    MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis

    Get PDF
    MiR-145 can regulate cell apoptosis, proliferation, neural development and stem cell differentiation. Previous studies indicate that miR-145 is downregulated in human colon cancer cells. However, the molecular mechanisms of miR-145 used to regulate colon carcinogenesis and angiogenesis remain to be clarified. Here, we show that the expression of miR-145 is downregulated in colon and ovarian cancer tissues and cell lines. MiR-145 inhibits p70S6K1 post-transcriptional expression by binding to its 3′-UTR. The angiogenic factors hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF), which are downstream molecules of p70S6K1, are decreased by miR-145 overexpression. P70S6K1 rescues miR-145-suppressed HIF-1 and VEGF levels, tumorigenesis and tumor angiogenesis. Furthermore, the miR-145 level is inversely correlated with the amount of p70S6K1 protein in colon cancer tissues. Taken together, these studies suggest that miR-145 serves as a tumor suppressor which downregulates HIF-1 and VEGF expression by targeting p70S6K1, leading to the inhibition of tumor growth and angiogenesis. The miR-145 rescue could be a rationale for therapeutic applications in colon cancer in the future

    Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival

    Get PDF
    Hypoxia inducible factors HIF1α and HIF2α are important proteins involved in the regulation of the transcription of a variety of genes related to erythropoiesis, glycolysis and angiogenesis. Hypoxic stimulation results in rapid increase of the HIF1α and 2α protein levels, as a consequence of a redox-sensitive stabilization. The HIFαs enter the nucleus, heterodimerize with the HIF1β protein, and bind to DNA at the hypoxia response elements (HREs) of target genes. In this study we evaluated the immunohistochemical expression of these proteins in 108 tissue samples from non-small-cell lung cancer (NSCLC) and in normal lung tissues. Both proteins showed a mixed cytoplasmic/nuclear pattern of expression in cancer cells, tumoural vessels and tumour-infiltrating macrophages, as well as in areas of metaplasia, while normal lung components showed negative or very weak cytoplasmic staining. Positive HIF1α and HIF2α expression was noted in 68/108 (62%) and in 54/108 (50%) of cases respectively. Correlation analysis of HIF2α expression with HIF1α expression showed a significant association (P < 0.0001, r = 0.44). A strong association of the expression of both proteins with the angiogenic factors VEGF (P < 0.004), PD-ECGF (P < 0.003) and bFGF (P < 0.04) was noted. HIF1α correlated with the expression of bek-bFGF receptor expression (P = 0.01), while HIF2α was associated with intense VEGF/KDR-activated vascularization (P = 0.002). HIF2α protein was less frequently expressed in cases with a medium microvessel density (MVD); a high rate of expression was noted in cases with both low and high MVD (P = 0.006). Analysis of overall survival showed that HIF2α expression was related to poor outcome (P = 0.008), even in the group of patients with low MVD (P = 0.009). HIF1α expression was marginally associated with poor prognosis (P = 0.08). In multivariate analysis HIF2α expression was an independent prognostic indicator (P = 0.006, t-ratio 2.7). We conclude that HIF1α and HIF2α overexpression is a common event in NSCLC, which is related to the up-regulation of various angiogenic factors and with poor prognosis. Targeting the HIF pathway may prove of importance in the treatment of NSCLC. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Expression of HIF-1alpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia-inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) are frequently overexpressed in numerous types of cancers and are known to be important regulators of angiogenesis. Until now, few studies have been carried out to investigate the prognostic role of these factors in solid tumors, especially in colorectal cancer (CRC). The purpose of this study was to evaluate the expression of HIF-1α and VEGF in CRC tissues, and to analyze the association of these two factors with several clinical and pathological characteristics, and patients' survival.</p> <p>Methods</p> <p>Paraffin-embedded tissue samples were retrospectively collected from 71 CRC patients, who received surgical resection between 2001 and 2002, with a median follow-up of 5 years. We examined the patterns of expression of HIF-1α and VEGF by immunohistochemistry method. Statistical analysis was performed with univariate tests and multivariate Cox proportional hazards model to evaluate the differences.</p> <p>Results</p> <p>Expression of HIF-1α and VEGF was positively observed in 54.93% and 56.34% among the patients, respectively. HIF-1α and VEGF status were significantly associated with tumor stage, lymph nodes and liver metastases (<it>P </it>< 0.05). Expression of both HIF-1α and VEGF remained significantly associated with overall survival (OS) (<it>P </it>< 0.01), and HIF-1α was positively correlative to VEGF in CRC (r = 0.72, <it>P </it>< 0.001).</p> <p>Conclusions</p> <p>HIF-1α and VEGF could be used as biomarkers indicating tumors in advanced stage and independently implied poor prognosis in patients with CRC. Treatment that inhibits HIF-1α might be a promising targeted approach in CRC to exhibit its potential to improve outcomes in future perspective, just as VEGF targeting has proved to be.</p

    Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis

    Get PDF
    Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions

    Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models

    Get PDF
    The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Zeu), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free vs. ice-influenced) and bottom depth (shelf vs. deep ocean). The models performed relatively well for the most recent decade and towards the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. . Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling

    Limited Effect of Dietary Saturated Fat on Plasma Saturated Fat in the Context of a Low Carbohydrate Diet

    Get PDF
    We recently showed that a hypocaloric carbohydrate restricted diet (CRD) had two striking effects: (1) a reduction in plasma saturated fatty acids (SFA) despite higher intake than a low fat diet, and (2) a decrease in inflammation despite a significant increase in arachidonic acid (ARA). Here we extend these findings in 8 weight stable men who were fed two 6-week CRD (12%en carbohydrate) varying in quality of fat. One CRD emphasized SFA (CRD-SFA, 86 g/d SFA) and the other, unsaturated fat (CRD-UFA, 47 g SFA/d). All foods were provided to subjects. Both CRD decreased serum triacylglycerol (TAG) and insulin, and increased LDL-C particle size. The CRD-UFA significantly decreased plasma TAG SFA (27.48 ± 2.89 mol%) compared to baseline (31.06 ± 4.26 mol%). Plasma TAG SFA, however, remained unchanged in the CRD-SFA (33.14 ± 3.49 mol%) despite a doubling in SFA intake. Both CRD significantly reduced plasma palmitoleic acid (16:1n-7) indicating decreased de novo lipogenesis. CRD-SFA significantly increased plasma phospholipid ARA content, while CRD-UFA significantly increased EPA and DHA. Urine 8-iso PGF2α, a free radical-catalyzed product of ARA, was significantly lower than baseline following CRD-UFA (−32%). There was a significant inverse correlation between changes in urine 8-iso PGF2α and PL ARA on both CRD (r = −0.82 CRD-SFA; r = −0.62 CRD-UFA). These findings are consistent with the concept that dietary saturated fat is efficiently metabolized in the presence of low carbohydrate, and that a CRD results in better preservation of plasma ARA
    corecore