73 research outputs found

    CaII Infrared triplet line models in Classical T Tauri stars

    Full text link
    We study the formation of the calcium II infrared triplet lines 8498\AA, 8542\AA and 8662\AA, in the accreting magnetospheric flows of Classical T Tauri stars (CTTS), and present a grid of models for a large range of magnetospheric conditions. We apply our models to the interpretation of multi epoch observations of the CTTS DI Cep. We find that these lines form in the magnetospheric infall and that the variability of the CaII triplet lines in DI Cep can be explained in the context of changes in the mass accretion rate/temperature of the accretion column gas

    The Magnetic Fields of Classical T Tauri Stars

    Full text link
    We report new magnetic field measurements for 14 classical T Tauri stars (CTTSs). We combine these data with one previous field determination in order to compare our observed field strengths with the field strengths predicted by magnetospheric accretion models. We use literature data on the stellar mass, radius, rotation period, and disk accretion rate to predict the field strength that should be present on each of our stars according to these magnetospheric accretion models. We show that our measured field values do not correlate with the field strengths predicted by simple magnetospheric accretion theory. We also use our field strength measurements and literature X-ray luminosity data to test a recent relationship expressing X-ray luminosity as a function of surface magnetic flux derived from various solar feature and main sequence star measurements. We find that the T Tauri stars we have observed have weaker than expected X-ray emission by over an order of magnitude on average using this relationship. We suggest the cause for this is actually a result of the very strong fields on these stars which decreases the efficiency with which gas motions in the photosphere can tangle magnetic flux tubes in the corona.Comment: 25 pages, 5 figure

    Unveiling the Inner Disk Structure of T Tauri Stars

    Full text link
    We present near-infrared spectra of the excess continuum emission from the innermost regions of classical T Tauri disks. In almost all cases, the shape of the excess is consistent with that of a single-temperature blackbody with T ~ 1400 K, similar to the expected dust sublimation temperature for typical dust compositions. The amount of excess flux roughly correlates with the accretion luminosity in objects with similar stellar properties. We compare our observations with the predictions of simple disk models having an inner rim located at the dust sublimation radius, including irradiation heating of the dust from both the stellar and accretion luminosities. The models yield inner rim radii in the range 0.07-0.54 AU, increasing with higher stellar and accretion luminosities. Using typical parameters which fit our observed sample, we predict a rim radius ~ 0.2 AU for the T Tauri star DG Tau, which agrees with recent Keck near-infrared interferometric measurements. For large mass accretion rates, the inner rim lies beyond the corotation radius at (or within) which magnetospheric accretion flows are launched, which implies that pure gaseous disks must extend inside the dust rim. Thus, for a significant fraction of young stars, dust cannot exist in the innermost disk, calling into question theories in which solid particles are ejected by a wind originating at the magnetospheric radius.Comment: accepted by ApJ letter

    No disks around low-mass stars and brown dwarfs in the young sigma Orionis cluster?

    Get PDF
    We report on the analysis of 2MASS near-infrared data of a sample of low-mass stars and brown dwarfs in the sigma Orionis cluster. Youth and cluster membership have been spectroscopically confirmed using the Li I spectral line. We find little evidence in the JHKs colour-colour diagram for near-infrared excess emission for these cluster members. By comparison with model expectations, at most 2 out of 34 stars show (H-K) colour consistent with a near-infrared excess. This scarcity of near-infrared signatures of circumstellar disks in the lower-mass and substellar regimes of this cluster contrasts with findings in younger clusters, hinting at an age dependence of the disk frequency. Taking into account the apparent cluster age, our result supports the idea of a relatively fast (few Myr) disk dissipation and extends this conclusion to the substellar regime. We also find some evidence that, in this cluster, the disk frequency as measured by the Ks-band excess may be mass dependent.Comment: 4 pages, 2 eps figures, accepted by Astronomy and Astrophysics Letter

    Stellar Properties of Pre-Main Sequence Stars from High Resolution Near-IR Spectra

    Full text link
    We present high resolution (R=50,000) spectra at 2.2 um of 16 young stars in the rho Ophiuchi dark cloud. Photospheric features are detected in the spectra of 11 of these sources, all Class II young stellar objects. In 10 of these sources, we measure effective temperatures, continuum veiling, and vsini rotation from the shapes and strengths of atomic photospheric lines by comparing to spectral synthesis models at 2.2 um. We measure surface gravities in 2 stars from the integrated line flux ratio of the 12CO line region at 2.3 um and the Na I line region at 2.2 um. Although the majority (8/10) of the Class II stars have similar effective temperatures (3530 K +/-100 K), they exhibit a large spread in bolometric luminosities (factor ~8), as derived from near-IR photometry. In the two stars where we have surface gravity measurements from spectroscopy, the photometrically derived luminosities are systematically higher than the spectroscopic luminosities. Our spectroscopic luminosities result in older ages on the H-R diagram than is suggested by photometry at J or K. Most of our sources show a substantially larger amount of continuum excess than stellar flux at 2.2 um. The derived veiling values at K appear correlated with mid-IR disk luminosity, and with Brackett gamma equivalent width, corrected for veiling. The derived vsini rotation is substantial (12-39 km s-1), but systematically less than the rotation measured in Class I.5 (flat) and Class I sources from other studies in Ophiuchus.Comment: Accepted for publication in the Astronomical Journal. 37 pages, 8 figure

    HST/STIS Observations of the Bipolar Jet from RW Aurigae: Tracing Outflow Asymmetries Close to the Source

    Get PDF
    We have observed the bipolar jet from RW Aur A with STIS on board the HST. After continuum subtraction, morphological and kinematic properties of this outflow can be traced to within 0."1 from the source in forbidden emission lines. The jet appears well collimated, with typical FWHMs of 20 to 30 AU in the first 2" and surprisingly does not show a separate low-velocity component in contrast to earlier observations. The systemic radial outflow velocity of the blueshifted lobe is typically 50% larger than that of the redshifted one with a velocity difference of about 65 km/s. Although such asymmetries have been seen before on larger scales, our high spatial resolution observations suggest that they are intrinsic to the "central engine" rather than effects of the star's immediate environment. Temporal variations of the bipolar jet's outflow velocities appear to occur on timescales of a few years. They have combined to produce a 55% increase in the velocity asymmetry between the two lobes over the past decade. In the red lobe estimated mass flux and momentum flux values are around one half and one third of those for the blue lobe, respectively. The mass outflow to mass accretion rate is 0.05, the former being measured at a distance of 0."35 from the source.Comment: Accepted by ApJ, 16 pages, 5 figure

    Unveiling the Structure of Pre-Transitional Disks

    Full text link
    In the past few years, several disks with inner holes that are empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of "pre-transitional disks" with gaps; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thick inner disk. Here we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in Taurus as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also model the broad-band SEDs of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, considering the finite size of the star. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.Comment: Accepted for publication in ApJ on May 10, 2010; 29 page

    Accretion and ejection properties of embedded protostars: the case of HH26, HH34 and HH46 IRS

    Full text link
    We present the results of a near-IR spectroscopic analysis on 3 young embedded sources (HH26IRS, HH34IRS and HH46IRS) belonging to different star-forming regions and displaying well developed jet structures. The aim is to investigate the source accretion and ejection properties and their connection. We used VLT-ISAAC spectra (R~9000, H and K bands) to derive in a self-consistent way parameters like the star luminosity, the accretion luminosity and the mass accretion rate. Mass loss rates have also been estimated from the analysis of different emission features. The spectra present several emission lines but no photospheric features in absorption, indicating a large veiling in H and K. We detected features commonly observed in jet-driving sources (HI,[FeII],H_2,CO) and also a number of emission lines due to permitted atomic transitions, like NaI and TiI. The NaI 2.2um doublet is observed along with CO(2-0) band-head emission, indicating a common origin in an inner gaseous disc heated by accretion. We find that accretion provides ~50% and ~80% of the bolometric luminosity in HH26IRS and HH34IRS, as expected for accreting young objects.Mass accretion and loss rates spanning 10^-8 - 10^-6 Msun/yr have been measured. The derived Mloss/Macc is ~0.01 for HH26IRS and HH34IRS, and >0.1 for HH46IRS, numbers that are in the range of values predicted by MHD jet-launching models and found in the most active classical T Tauri stars. Comparison with other similar studies seems to indicate that Class Is actually having accretion- dominated luminosities are a limited number. Although the analysed sample is small, we tentatively present some criteria to characterise such sources. Studies like the one presented here but on larger samples of candidates should be performed in order to test and refine these criteria.Comment: Accepted for A&A - 13 pages, 7 figure

    V2494 cyg: A unique FU ori type object in the cygnus OB7 complex

    Get PDF
    A photometric and spectral study of the variable star V2494 Cyg in the L 1003 dark cloud is presented. The brightness of the star, formerly known as HH 381 IRS, increased by 2.5 mag in R (probably in the 1980s) and since then has remained nearly constant. Since the brightness increase, V2494 Cyg has illuminated a bipolar cometary nebula. The stellar spectrum has several features typical of the FU Ori (FUor) type, plus it exhibits very strong Ha and forbidden emissionlines with high-velocity components. These emission lines originate in the Herbig-Haro (HH) jet near the star. The kinematic age of the jet is consistent with it forming at the time of the outburst leading to the luminosity increase. V2494 Cyg also produces a rather extended outflow; it is the first known FUor with both an observed outburst and a parsec-sized HH flow. The nebula, illuminated by V2494 Cyg, possesses similar morphological and spectral characteristics to Hubble's variable nebula (R Monocerotis/NGC 2261). © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society
    corecore