In the past few years, several disks with inner holes that are empty of small
dust grains have been detected and are known as transitional disks. Recently,
Spitzer has identified a new class of "pre-transitional disks" with gaps; these
objects have an optically thick inner disk separated from an optically thick
outer disk by an optically thin disk gap. A near-infrared spectrum provided the
first confirmation of a gap in the pre-transitional disk of LkCa 15 by
verifying that the near-infrared excess emission in this object was due to an
optically thick inner disk. Here we investigate the difference between the
nature of the inner regions of transitional and pre-transitional disks using
the same veiling-based technique to extract the near-infrared excess emission
above the stellar photosphere. We show that the near-infrared excess emission
of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in
Taurus as well as the newly identified pre-transitional disk of ROX 44 in
Ophiuchus can be fit with an inner disk wall located at the dust destruction
radius. We also model the broad-band SEDs of these objects, taking into account
the effect of shadowing by the inner disk on the outer disk, considering the
finite size of the star. The near-infrared excess continua of these three
pre-transitional disks, which can be explained by optically thick inner disks,
are significantly different from that of the transitional disks of GM Aur,
whose near-infrared excess continuum can be reproduced by emission from
sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum
is consistent with a disk hole that is relatively free of small dust. The
structure of pre-transitional disks may be a sign of young planets forming in
these disks and future studies of pre-transitional disks will provide
constraints to aid in theoretical modeling of planet formation.Comment: Accepted for publication in ApJ on May 10, 2010; 29 page