60 research outputs found

    Prevalence of Streptococcus pneumoniae in conjunctival flora and association with nasopharyngeal carriage among children in a Vietnamese community.

    Get PDF
    Conjunctival pneumococcal serotypes among members of a community have not been investigated well. We determined the prevalence and association of Streptococcus pneumoniae in the nasopharynx and conjunctiva among children in a community before pneumococcal conjugate vaccine introduction. In October 2016, conjunctival and nasopharyngeal swabs were collected from children (< 24 months old) and nasopharyngeal swabs from mothers in Nha Trang, Vietnam. Quantitative lytA PCR and DNA microarray were performed to detect and serotype S. pneumoniae. The association between S. pneumoniae in the nasopharynx and conjunctiva was evaluated using multivariable logistic regression model. Among 698 children, 62 (8.9%, 95% CI 6.9-11.2%) were positive for S. pneumoniae in the conjunctiva. Non-encapsulated S. pneumoniae were most commonly identified, followed by serotypes 6A, 6B, and 14. Nasopharyngeal and conjunctival detection were positively associated (aOR 47.30, 95% CI 24.07-92.97). Low birth-weight, day-care attendance, and recent eye symptoms were independently associated with S. pneumoniae detection in the conjunctiva (aOR 11.14, 95% CI 3.76-32.98, aOR 2.19, 95% CI 1.45-3.31, and aOR 3.59, 95% CI 2.21-5.84, respectively). Serotypes and genotypes in the conjunctiva and nasopharynx matched in 87% of the children. Three mothers' nasopharyngeal pneumococcal samples had matched serotype and genotype with their child's in the conjunctiva and nasopharynx. S. pneumoniae presence in nasopharynx and conjunctiva were strongly associated. The high concordance of serotypes suggests nasopharyngeal carriage may be a source of transmission to the conjunctiva

    Determinants of high residual post-PCV13 pneumococcal vaccine-type carriage in Blantyre, Malawi:a modelling study

    Get PDF
    Background In November 2011, Malawi introduced the 13-valent pneumococcal conjugate vaccine (PCV13) into the routine infant schedule. Four to 7 years after introduction (2015–2018), rolling prospective nasopharyngeal carriage surveys were performed in the city of Blantyre. Carriage of Streptococcus pneumoniae vaccine serotypes (VT) remained higher than reported in high-income countries, and impact was asymmetric across age groups. Methods A dynamic transmission model was fit to survey data using a Bayesian Markov-chain Monte Carlo approach, to obtain insights into the determinants of post-PCV13 age-specific VT carriage. Results Accumulation of naturally acquired immunity with age and age-specific transmission potential were both key to reproducing the observed data. VT carriage reduction peaked sequentially over time, earlier in younger and later in older age groups. Estimated vaccine efficacy (protection against carriage) was 66.87% (95% CI 50.49–82.26%), similar to previous estimates. Ten-year projected vaccine impact (VT carriage reduction) among 0–9 years old was lower than observed in other settings, at 76.23% (CI 95% 68.02–81.96%), with sensitivity analyses demonstrating this to be mainly driven by a high local force of infection. Conclusions There are both vaccine-related and host-related determinants of post-PCV13 pneumococcal VT transmission in Blantyre with vaccine impact determined by an age-specific, local force of infection. These findings are likely to be generalisable to other Sub-Saharan African countries in which PCV impact on carriage (and therefore herd protection) has been lower than desired, and have implications for the interpretation of post-PCV carriage studies and future vaccination programs.</p

    Long-Term Effects of Pneumococcal Conjugate Vaccine on Nasopharyngeal Carriage of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis

    Get PDF
    BACKGROUND: Shifts in pneumococcal serotypes following introduction of 7-valent pneumococcal conjugate vaccine (PCV-7) may alter the presence of other bacterial pathogens co-inhabiting the same nasopharyngeal niche. METHODOLOGY/PRINCIPAL FINDINGS: Nasopharyngeal prevalence rates of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis were investigated before, 3 and 4.5 years after introduction of PCV-7 in the national immunisation program in children at 11 and 24 months of age, and parents of 24-month-old children (n≈330/group) using conventional culture methods. Despite a virtual disappearance of PCV-7 serotypes over time, similar overall pneumococcal rates were observed in all age groups, except for a significant reduction in the 11-month-old group (adjusted Odds Ratio after 4.5 years 0.48, 95% Confidence Interval 0.34-0.67). Before, 3 and 4.5 years after PCV-7 implementation, prevalence rates of S. aureus were 5%, 9% and 14% at 11 months of age (3.59, 1.90-6.79) and 20%, 32% and 34% in parents (1.96, 1.36-2.83), but remained similar at 24 months of age, respectively. Prevalence rates of H. influenzae were 46%, 65% and 65% at 11 months (2.22, 1.58-3.13), 52%, 73% and 76% at 24 months of age (2.68, 1.88-3.82) and 23%, 30% and 40% in parents (2.26, 1.58-3.33), respectively. No consistent changes in M. catarrhalis carriage rates were observed over time. CONCLUSIONS/SIGNIFICANCE: In addition to large shifts in pneumococcal serotypes, persistently higher nasopharyngeal prevalence rates of S. aureus and H. influenzae were observed among young children and their parents after PCV-7 implementation. These findings may have implications for disease incidence and antibiotic treatment in the post-PCV era

    Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts

    Get PDF
    Background: Assessing temporal variations in transmission in different countries is essential for monitoring the epidemic, evaluating the effectiveness of public health interventions and estimating the impact of changes in policy. Methods: We use case and death notification data to generate daily estimates of the time-varying reproduction number globally, regionally, nationally, and subnationally over a 12-week rolling window. Our modelling framework, based on open source tooling, accounts for uncertainty in reporting delays, so that the reproduction number is estimated based on underlying latent infections. Results: Estimates of the reproduction number, trajectories of infections, and forecasts are displayed on a dedicated website as both maps and time series, and made available to download in tabular form. Conclusions:  This decision-support tool can be used to assess changes in virus transmission both globally, regionally, nationally, and subnationally. This allows public health officials and policymakers to track the progress of the outbreak in near real-time using an epidemiologically valid measure. As well as providing regular updates on our website, we also provide an open source tool-set so that our approach can be used directly by researchers and policymakers on confidential data-sets. We hope that our tool will be used to support decisions in countries worldwide throughout the ongoing COVID-19 pandemic.</ns4:p

    The importance of supplementary immunisation activities to prevent measles outbreaks during the COVID-19 pandemic in Kenya

    Get PDF
    Background: The COVID-19 pandemic has disrupted routine measles immunisation and supplementary immunisation activities (SIAs) in most countries including Kenya. We assessed the risk of measles outbreaks during the pandemic in Kenya as a case study for the African Region. Methods: Combining measles serological data, local contact patterns, and vaccination coverage into a cohort model, we predicted the age-adjusted population immunity in Kenya and estimated the probability of outbreaks when contact-reducing COVID-19 interventions are lifted. We considered various scenarios for reduced measles vaccination coverage from April 2020. Results: In February 2020, when a scheduled SIA was postponed, population immunity was close to the herd immunity threshold and the probability of a large outbreak was 34% (8–54). As the COVID-19 contact restrictions are nearly fully eased, from December 2020, the probability of a large measles outbreak will increase to 38% (19–54), 46% (30–59), and 54% (43–64) assuming a 15%, 50%, and 100% reduction in measles vaccination coverage. By December 2021, this risk increases further to 43% (25–56), 54% (43–63), and 67% (59–72) for the same coverage scenarios respectively. However, the increased risk of a measles outbreak following the lifting of all restrictions can be overcome by conducting a SIA with ≥ 95% coverage in under-fives. Conclusion: While contact restrictions sufficient for SAR-CoV-2 control temporarily reduce measles transmissibility and the risk of an outbreak from a measles immunity gap, this risk rises rapidly once these restrictions are lifted. Implementing delayed SIAs will be critical for prevention of measles outbreaks given the roll-back of contact restrictions in Kenya

    Importance of patient bed pathways and length of stay differences in predicting COVID-19 hospital bed occupancy in England.

    Get PDF
    Background: Predicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patient’s “bed pathway” - the sequence of transfers of individual patients between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. Methods: We obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. Results: In both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: “Ward, CC, Ward”, “Ward, CC”, “CC” and “CC, Ward”. Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. Conclusions: We identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occupancy for COVID-19. Trial registration: The ISARIC WHO CCP-UK study ISRCTN66726260 was retrospectively registered on 21/04/2020 and designated an Urgent Public Health Research Study by NIHR.</p

    Search for new phenomena in high-mass diphoton final states using 37 fb−1 of proton–proton collisions collected at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb−1 at a centre-of-mass energy √s = 13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extra-dimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model

    [Accepted Manuscript] Using Pneumococcal Carriage Data to Monitor Postvaccination Changes in the Incidence of Pneumococcal Otitis Media

    No full text
    Pneumococcal conjugate vaccines (PCVs) have substantially reduced the burden of pneumococcal disease, including the incidence of otitis media (OM). However, in most countries, no surveillance exists to monitor the change in pneumococcal OM incidence after the introduction of PCVs. We explored whether measuring pneumococcal carriage was a useful surrogate for monitoring postvaccination changes in the incidence of pneumococcal OM. The 7-valent PCV was introduced to Israel's national immunization program in July 2009 and gradually replaced by the 13-valent PCV starting in November 2010. Each day since 2009, nasopharyngeal swabs have been obtained from the first 4 Bedouin children and the first 4 Jewish children who were younger than 5 years old and attended a pediatric emergency room in southern Israel. During the same time, OM surveillance in southern Israel included all children younger than 2 years of age who were diagnosed with OM and had undergone a middle-ear fluid culture. The relative change in the prevalence of vaccine-serotype (VT) pneumococcal carriage was predictive of the relative change in incidence of OM due to VT pneumococcus. However, the serotype replacement observed in non-VT carriage is not paralleled in the incidence of OM due to non-VT pneumococcus. This could indicate that there are more complex mechanisms of the immune response involved in preventing initial and consecutive episodes of OM, which has been changed through declining prevalence of the most virulent serotypes as a result of vaccination
    corecore