11 research outputs found

    Developing a Serious Game to Explore Joint All Domain Command and Control

    Get PDF
    Changes in the geopolitical landscape and increasing technological complexity have prompted the U.S. Military to coin Multi-Domain Operations (MDO) and Joint All-Domain Command and Control as terms to describe an over-arching strategy that frames the complexity of warfare across both traditional and emerging warfighting domains. Teaching new and advanced concepts associated with these terms requires both innovation as well as distinct education and training tools in order to realize the cultural change advocated by senior military leaders. BSN, a Collectible Card Game, was developed to teach concepts integral to MDO and initiate discussion on military strategy

    Battlespace Next™: Developing a Serious Game to Explore Multi-domain Operations

    Get PDF
    Changes in the geopolitical landscape and increasing technological complexity have prompted the U.S. Military to coin the terms Multi-Domain Operations (MDO) and Joint All-Domain Command and Control (JADC2) as over-arching strategy to frame the complexity of warfare across both traditional and emerging warfighting domains. Teaching new concepts associated with these terms requires both innovation as well as distinct education and training tools in order to realize the cultural change advocated by senior military leaders. Battlespace Next™ (BSN) is a serious game designed to teach concepts integral to MDO and initiate discussion on military strategy while conserving time, money, and manpower. BSN, a Collectable Card Game (CCG), is engineered to provide an engaging learning tool that educates on capabilities in a multi-domain conflict. This paper proposes an extensible game framework for modeling and reasoning about MDO concepts and presents our empirical feedback from over 120 military play testers evaluating a moderate to difficult version of the game. Results reveal the game teaches MDO concepts and delivers an engaging, hands-on learning experience. Specifically, we provide evidence it improved military readiness in seven areas of MDO in at least 62% of participants and 76% of respondents reported they enjoyed playing the game

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Cold atoms in space : community workshop summary and proposed road-map

    No full text

    Cold atoms in space: community workshop summary and proposed road-map

    No full text
    AbstractWe summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.</jats:p
    corecore