54 research outputs found
ABC Efflux Transporters and Solute Carriers in the Early Developing Brain of a Marsupial Monodelphis domestica (South American Gray Short-Tailed Opossum)
This study used a marsupial Monodelphis domestica, which is born very immature and most of its development is postnatal without placental protection. RNA-sequencing (RNA-Seq) was used to identify the expression of influx and efflux transporters (ATP-binding cassettes [ABCs] and solute carriers [SLCs]) and metabolizing enzymes in brains of newborn to juvenile Monodelphis. Results were compared to published data in the developing eutherian rat. To test the functionality of these transporters at similar ages, the entry of paracetamol (acetaminophen) into the brain and cerebrospinal fluid (CSF) was measured using liquid scintillation counting following a single administration of the drug along with its radiolabelled tracer [3H]. Drug permeability studies found that in Monodelphis, brain entry of paracetamol was already restricted at P5; it decreased further in the first week of life and then remained stable until the oldest age group tested (P110). Transcriptomic analysis of Monodelphis brain showed that expression of transporters and their metabolizing enzymes in early postnatal (P) pups (P0, P5, and P8) was relatively similar, but by P109, many more transcripts were identified. When transcriptomes of newborn Monodelphis brain and E19 rat brain and placenta were compared, several transporters present in the rat placenta were also found in the newborn Monodelphis brain. These were absent from E19 rat brain but were present in the adult rat brain. These data indicate that despite its extreme immaturity, the newborn Monodelphis brain may compensate for the lack of placental protection during early brain development by upregulating protective mechanisms, which in eutherian animals are instead present in the placenta
A mixed methods approach to evaluating community drug distributor performance in the control of neglected tropical diseases
BACKGROUND: Trusted literate, or semi-literate, community drug distributors (CDDs) are the primary implementers in integrated preventive chemotherapy (IPC) programmes for Neglected Tropical Disease (NTD) control. The CDDs are responsible for safely distributing drugs and for galvanising communities to repeatedly, often over many years, receive annual treatment, create and update treatment registers, monitor for side-effects and compile treatment coverage reports. These individuals are 'volunteers' for the programmes and do not receive remuneration for their annual work commitment. METHODS: A mixed methods approach, which included pictorial diaries to prospectively record CDD use of time, structured interviews and focus group discussions, was used to triangulate data on how 58 CDDs allocated their time towards their routine family activities and to NTD Programme activities in Uganda. The opportunity costs of CDD time were valued, performance assessed by determining the relationship between time and programme coverage, and CDD motivation for participating in the programme was explored. RESULTS: Key findings showed approximately 2.5 working weeks (range 0.6-11.4 working weeks) were spent on NTD Programme activities per year. The amount of time on NTD control activities significantly increased between the one and three deliveries that were required within an IPC campaign. CDD time spent on NTD Programme activities significantly reduced time available for subsistence and income generating engagements. As CDDs took more time to complete NTD Programme activities, their treatment performance, in terms of validated coverage, significantly decreased. Motivation for the programme was reported as low and CDDs felt undervalued. CONCLUSIONS: CDDs contribute a considerable amount of opportunity cost to the overall economic cost of the NTD Programme in Uganda due to the commitment of their time. Nevertheless, programme coverage of at least 75 %, as required by the World Health Organisation, is not being achieved and vulnerable individuals may not have access to treatment as a consequence of sub-optimal performance by the CDDs due to workload and programmatic factors
A critical analysis of Child and Adolescent Mental Health Services policy in England
Policy in Child and Adolescent Mental Health (CAMH) in England has undergone radical changes in the last 15 years, with far reaching implications for funding models, access to services and service delivery. Using corpus analysis and critical discourse analysis, we explore how childhood, mental health, and CAMHS are constituted in 15 policy documents, 9 pre-2010, and 6 post 2010. We trace how these constructions have changed over time, and consider the practice implications of these changes. We identify how children’s distress is individualised, through medicalising discourses and shifting understandings of the relationship between socioeconomic context and mental health. This is evidenced in a shift from seeing children’s mental health challenges as produced by social and economic inequities, to a view that children’s mental health must be addressed early to prevent future socio-economic burden. We consider the implications CAMHS policies for the relationship between children, families, mental health services and the state. The paper concludes by exploring how concepts of ‘parity of esteem’ and ‘stigma reduction’ may inadvertently exacerbate the individualisation of children’s mental health
Low-Level Laser Therapy Activates NF-kB via Generation of Reactive Oxygen Species in Mouse Embryonic Fibroblasts
Background
Despite over forty years of investigation on low-level light therapy (LLLT), the fundamental mechanisms underlying photobiomodulation at a cellular level remain unclear.
Methodology/Principal Findings
In this study, we isolated murine embryonic fibroblasts (MEF) from transgenic NF-kB luciferase reporter mice and studied their response to 810 nm laser radiation. Significant activation of NF-kB was observed at fluences higher than 0.003 J/cm2 and was confirmed by Western blot analysis. NF-kB was activated earlier (1 hour) by LLLT compared to conventional lipopolysaccharide treatment. We also observed that LLLT induced intracellular reactive oxygen species (ROS) production similar to mitochondrial inhibitors, such as antimycin A, rotenone and paraquat. Furthermore, we observed similar NF-kB activation with these mitochondrial inhibitors. These results, together with inhibition of laser induced NF-kB activation by antioxidants, suggests that ROS play an important role in the laser induced NF-kB signaling pathways. However, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that LLLT also upregulates mitochondrial respiration.
Conclusion
We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive NFkB signaling via generation of ROS. Expression of anti-apoptosis and pro-survival genes responsive to NFkB could explain many clinical effects of LLLT.National Institutes of Health (U.S.) (grant R01AI050875)Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006)United States. Dept. of Defense (CDMRP Program in TBI, W81XWH-09-1-0514)United States. Air Force Office of Scientific Research (FA9950-04-1-0079
Incidence and prevalence of patellofemoral pain: a systematic review and meta-analysis
Background: Patellofemoral pain is considered one of the most common forms of knee pain, affecting adults, adolescents, and physically active populations. Inconsistencies in reported incidence and prevalence exist and in relation to the allocation of healthcare and research funding, there is a clear need to accurately understand the epidemiology of patellofemoral pain.
Methods: An electronic database search was conducted, as well as grey literature databases, from inception to June 2017. Two authors independently selected studies, extracted data and appraised methodological quality. If heterogeneous, data were analysed descriptively. Where studies were homogeneous, data were pooled through a meta-analysis.
Results: 23 studies were included. Annual prevalence for patellofemoral pain in the general population was reported as 22.7%, and adolescents as 28.9%. Incidence rates in military recruits ranged from 9.7 – 571.4/1,000 person-years, amateur runners in the general population at 1080.5/1,000 person-years and adolescents amateur athletes 5.1% - 14.9% over 1 season. One study reported point prevalence within military populations as 13.5%. The pooled estimate for point prevalence in adolescents was 7.2% (95% Confidence Interval: 6.3% - 8.3%), and in female only adolescent athletes was 22.7% (95% Confidence Interval 17.4% - 28.0%).
Conclusion: This review demonstrates high incidence and prevalence levels for patellofemoral pain. Within the context of this, and poor long term prognosis and high disability levels, PFP should be an urgent research priority
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have
fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in
25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16
regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of
correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP,
while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in
Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium
(LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region.
Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant
enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the
refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa,
an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of
PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent
signals within the same regio
The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study
Background:
Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy.
Methods:
Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored.
Results:
A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays.
Conclusions:
IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients
- …