933 research outputs found

    Oligomerization of ÎČ-dystroglycan in rabbit diaphragm and brain as revealed by chemical crosslinking

    Get PDF
    AbstractThe surface component ÎČ-dystroglycan is a member of the dystrophin–glycoprotein complex providing a trans-sarcolemmal linkage between the actin membrane cytoskeleton and the extracellular matrix component laminin-α2. Although abnormalities in this complex are involved in the pathophysiology of various neuromuscular disorders, little is known about the organization of dystrophin-associated glycoproteins in diaphragm and brain. We therefore investigated the oligomerization of ÎČ-dystroglycan and its connection with the most abundant dystrophin homologues in these two tissues. Employing detergent solubilization and alkaline extraction procedures of native membranes, it was confirmed that ÎČ-dystroglycan behaves like an integral surface molecule as predicted by its cDNA sequence. Immunoblot analysis following chemical crosslinking of native membranes showed that ÎČ-dystroglycan has a tendency to form high-molecular-mass complexes. Within these crosslinkable complexes, immuno-reactive overlaps were observed between ÎČ-dystroglycan, α-dystroglycan, laminin and 427 kDa dystrophin in diaphragm and skeletal muscle. In synaptosomes, the major brain dystrophin isoform Dp116 also exhibited an immuno-reactive overlap with members of the dystroglycan complex. These findings demonstrate that ÎČ-dystroglycan does not exist as a monomer in native membranes and imply that certain dystrophin isoforms and dystrophin-associated components interact with this surface protein in diaphragm and brain as has been previously shown for skeletal and heart muscle

    Unpacking the behavioural components and delivery features of early childhood obesity prevention interventions in the TOPCHILD Collaboration: a systematic review and intervention coding protocol.

    Get PDF
    INTRODUCTION: Little is known about how early (eg, commencing antenatally or in the first 12 months after birth) obesity prevention interventions seek to change behaviour and which components are or are not effective. This study aims to (1) characterise early obesity prevention interventions in terms of target behaviours, delivery features and behaviour change techniques (BCTs), (2) explore similarities and differences in BCTs used to target behaviours and (3) explore effectiveness of intervention components in preventing childhood obesity. METHODS AND ANALYSIS: Annual comprehensive systematic searches will be performed in Epub Ahead of Print/MEDLINE, Embase, Cochrane (CENTRAL), CINAHL, PsycINFO, as well as clinical trial registries. Eligible randomised controlled trials of behavioural interventions to prevent childhood obesity commencing antenatally or in the first year after birth will be invited to join the Transforming Obesity in CHILDren Collaboration. Standard ontologies will be used to code target behaviours, delivery features and BCTs in both published and unpublished intervention materials provided by trialists. Narrative syntheses will be performed to summarise intervention components and compare applied BCTs by types of target behaviours. Exploratory analyses will be undertaken to assess effectiveness of intervention components. ETHICS AND DISSEMINATION: The study has been approved by The University of Sydney Human Research Ethics Committee (project no. 2020/273) and Flinders University Social and Behavioural Research Ethics Committee (project no. HREC CIA2133-1). The study's findings will be disseminated through peer-reviewed publications, conference presentations and targeted communication with key stakeholders. PROSPERO REGISTRATION NUMBER: CRD42020177408

    A proposed new bacteriophage subfamily: “Jerseyvirinae”

    Get PDF
    © 2015, Springer-Verlag Wien. Based on morphology and comparative nucleotide and protein sequence analysis, a new subfamily of the family Siphoviridae is proposed, named “Jerseyvirinae” and consisting of three genera, “Jerseylikevirus”, “Sp3unalikevirus” and “K1glikevirus”. To date, this subfamily consists of 18 phages for which the genomes have been sequenced. Salmonella phages Jersey, vB_SenS_AG11, vB_SenS-Ent1, vB_SenS-Ent2, vB_SenS-Ent3, FSL SP-101, SETP3, SETP7, SETP13, SE2, SS3e and wksl3 form the proposed genus “Jerseylikevirus”. The proposed genus “K1glikevirus” consists of Escherichia phages K1G, K1H, K1ind1, K1ind2 and K1ind3. The proposed genus “Sp3unalikevirus” contains one member so far. Jersey-like phages appear to be widely distributed, as the above phages were isolated in the UK, Canada, the USA and South Korea between 1970 and the present day. The distinguishing features of this subfamily include a distinct siphovirus morphotype, genomes of 40.7-43.6kb (49.6-51.4mol% G+C), a syntenic genome organisation, and a high degree of nucleotide sequence identity and shared proteins. All known members of the proposed subfamily are strictly lytic

    De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordaria macrospora, a Model Organism for Fungal Morphogenesis

    Get PDF
    Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30–90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in ∌4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology

    Transforming Obesity Prevention for CHILDren (TOPCHILD) Collaboration: protocol for a systematic review with individual participant data meta-analysis of behavioural interventions for the prevention of early childhood obesity.

    Get PDF
    INTRODUCTION: Behavioural interventions in early life appear to show some effect in reducing childhood overweight and obesity. However, uncertainty remains regarding their overall effectiveness, and whether effectiveness differs among key subgroups. These evidence gaps have prompted an increase in very early childhood obesity prevention trials worldwide. Combining the individual participant data (IPD) from these trials will enhance statistical power to determine overall effectiveness and enable examination of individual and trial-level subgroups. We present a protocol for a systematic review with IPD meta-analysis to evaluate the effectiveness of obesity prevention interventions commencing antenatally or in the first year after birth, and to explore whether there are differential effects among key subgroups. METHODS AND ANALYSIS: Systematic searches of Medline, Embase, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycInfo and trial registries for all ongoing and completed randomised controlled trials evaluating behavioural interventions for the prevention of early childhood obesity have been completed up to March 2021 and will be updated annually to include additional trials. Eligible trialists will be asked to share their IPD; if unavailable, aggregate data will be used where possible. An IPD meta-analysis and a nested prospective meta-analysis will be performed using methodologies recommended by the Cochrane Collaboration. The primary outcome will be body mass index z-score at age 24±6 months using WHO Growth Standards, and effect differences will be explored among prespecified individual and trial-level subgroups. Secondary outcomes include other child weight-related measures, infant feeding, dietary intake, physical activity, sedentary behaviours, sleep, parenting measures and adverse events. ETHICS AND DISSEMINATION: Approved by The University of Sydney Human Research Ethics Committee (2020/273) and Flinders University Social and Behavioural Research Ethics Committee (HREC CIA2133-1). Results will be relevant to clinicians, child health services, researchers, policy-makers and families, and will be disseminated via publications, presentations and media releases. PROSPERO REGISTRATION NUMBER: CRD42020177408

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat
    • 

    corecore