57 research outputs found
The quantum speed up as advanced knowledge of the solution
With reference to a search in a database of size N, Grover states: "What is
the reason that one would expect that a quantum mechanical scheme could
accomplish the search in O(square root of N) steps? It would be insightful to
have a simple two line argument for this without having to describe the details
of the search algorithm". The answer provided in this work is: "because any
quantum algorithm takes the time taken by a classical algorithm that knows in
advance 50% of the information that specifies the solution of the problem".
This empirical fact, unnoticed so far, holds for both quadratic and exponential
speed ups and is theoretically justified in three steps: (i) once the physical
representation is extended to the production of the problem on the part of the
oracle and to the final measurement of the computer register, quantum
computation is reduction on the solution of the problem under a relation
representing problem-solution interdependence, (ii) the speed up is explained
by a simple consideration of time symmetry, it is the gain of information about
the solution due to backdating, to before running the algorithm, a
time-symmetric part of the reduction on the solution; this advanced knowledge
of the solution reduces the size of the solution space to be explored by the
algorithm, (iii) if I is the information acquired by measuring the content of
the computer register at the end of the algorithm, the quantum algorithm takes
the time taken by a classical algorithm that knows in advance 50% of I, which
brings us to the initial statement.Comment: 23 pages, to be published in IJT
Electronic Structure of Transition-Metal Dicyanamides Me[N(CN)] (Me = Mn, Fe, Co, Ni, Cu)
The electronic structure of Me[N(CN)] (Me=Mn, Fe, Co, Ni, Cu)
molecular magnets has been investigated using x-ray emission spectroscopy (XES)
and x-ray photoelectron spectroscopy (XPS) as well as theoretical
density-functional-based methods. Both theory and experiments show that the top
of the valence band is dominated by Me 3d bands, while a strong hybridization
between C 2p and N 2p states determines the valence band electronic structure
away from the top. The 2p contributions from non-equivalent nitrogen sites have
been identified using resonant inelastic x-ray scattering spectroscopy with the
excitation energy tuned near the N 1s threshold. The binding energy of the Me
3d bands and the hybridization between N 2p and Me 3d states both increase in
going across the row from Me = Mn to Me = Cu. Localization of the Cu 3d states
also leads to weak screening of Cu 2p and 3s states, which accounts for shifts
in the core 2p and 3s spectra of the transition metal atoms. Calculations
indicate that the ground-state magnetic ordering, which varies across the
series is largely dependent on the occupation of the metal 3d shell and that
structural differences in the superexchange pathways for different compounds
play a secondary role.Comment: 20 pages, 11 figures, 2 table
Ultrafast Nonlinear Optical Response of Strongly Correlated Systems: Dynamics in the Quantum Hall Effect Regime
We present a theoretical formulation of the coherent ultrafast nonlinear
optical response of a strongly correlated system and discuss an example where
the Coulomb correlations dominate. We separate out the correlated contributions
to the third-order nonlinear polarization, and identify non-Markovian dephasing
effects coming from the non-instantaneous interactions and propagation in time
of the collective excitations of the many-body system. We discuss the
signatures, in the time and frequency dependence of the four-wave-mixing (FWM)
spectrum, of the inter-Landau level magnetoplasmon (MP) excitations of the
two-dimensional electron gas (2DEG) in a perpendicular magnetic field. We
predict a resonant enhancement of the lowest Landau level (LL) FWM signal, a
strong non-Markovian dephasing of the next LL magnetoexciton (X), a symmetric
FWM temporal profile, and strong oscillations as function of time delay, of
quantum kinetic origin. We show that the correlation effects can be controlled
experimentally by tuning the central frequency of the optical excitation
between the two lowest LLs.Comment: 21 pages, 10 figure
Studies of Hadronic Event Structure in e+e- Annihilation from 30 GeV to 209 GeV with the L3 Detector
In this Report, QCD results obtained from a study of hadronic event structure
in high energy e^+e^- interactions with the L3 detector are presented. The
operation of the LEP collider at many different collision energies from 91 GeV
to 209 GeV offers a unique opportunity to test QCD by measuring the energy
dependence of different observables. The main results concern the measurement
of the strong coupling constant, \alpha_s, from hadronic event shapes and the
study of effects of soft gluon coherence through charged particle multiplicity
and momentum distributions.Comment: To appear in Physics Report
Polymorphism: an evaluation of the potential risk to the quality of drug products from the Farmácia Popular Rede Própria
Polymorphism in solids is a common phenomenon in drugs, which can lead to compromised quality due to changes in their physicochemical properties, particularly solubility, and, therefore, reduce bioavailability. Herein, a bibliographic survey was performed based on key issues and studies related to polymorphism in active pharmaceutical ingredient (APIs) present in medications from the Farmácia Popular Rede Própria. Polymorphism must be controlled to prevent possible ineffective therapy and/or improper dosage. Few mandatory tests for the identification and control of polymorphism in medications are currently available, which can result in serious public health concerns
Predicting intensive care unit readmissions using probabilistic fuzzy systems
We propose the application of probabilistic fuzzy systems (PFS) to model the prediction of early readmission in intensive care unit patients and compare it with the gold-standard method - logistic regression based on the APACHE II score. PFS are characterized by the combination of the linguistic description of the system with the statistical properties of data. On one hand, results point that PFS models perform comparably to the gold-standard method, with AUC values of 0.66±0.03. On the other hand, results also show that PFS models use a significant lower number of variables which, from the clinical practice point of view, suggests improved gains in terms of simplicit
- …
