63 research outputs found

    Beyond Materiality, Towards Craftsmanship

    Get PDF
    This paper describes the design process UNStudio undertook in the redevelopment of the C&A Building on 18 Septemberplein in Eindhoven, the Netherlands. The design brief primarily called for the rebranding of the building while maintaining the building’s façade historic value and aesthetic. Secondarily, the design is meant to activate the urban context where the building is located without competing with the neighboring landmarks. UNStudio saw an opportunity to rethink the transparent layer – the glass window – of the building as a tool to enhance its identity minimizing the aesthetic impact on its historic facade.   This case study outlines opportunities to innovate while designing with glass through two often polarized perspectives: contemporary architecture and historic preservation. Architects constantly negotiate the value of private versus public space, transparency versus opacity, and building energy performance in our built environment through the use of glass. Emerging integrated technologies such as LED, photovoltaic, lamination, and touch sensitive layer are enabling new ways of rethinking the roles and applications of glass: as an architectural element, an information layering surface, and an agent for light and transparency. New opportunities are thus arising for glass in digital media facades and parametric façade design. On the other hand, architects’ role in historic preservation requires a diligent approach to glass application due to the constraints of local zoning and aesthetic regulations (governed in the Netherlands by the Welstandscommissie) that seek to protect certain historic values in existing buildings. The objective of this paper is to apply UNStudio’s design thinking sensibilities towards – and understanding of – glass as a system, to contemporary themes of community, social branding, and the environmental impact of architects’ interventions on the built environment

    Enabling Non-Linear Quantum Operations through Variational Quantum Splines

    Full text link
    The postulates of quantum mechanics impose only unitary transformations on quantum states, which is a severe limitation for quantum machine learning algorithms. Quantum Splines (QSplines) have recently been proposed to approximate quantum activation functions to introduce non-linearity in quantum algorithms. However, QSplines make use of the HHL as a subroutine and require a fault-tolerant quantum computer to be correctly implemented. This work proposes the Generalised QSplines (GQSplines), a novel method for approximating non-linear quantum activation functions using hybrid quantum-classical computation. The GQSplines overcome the highly demanding requirements of the original QSplines in terms of quantum hardware and can be implemented using near-term quantum computers. Furthermore, the proposed method relies on a flexible problem representation for non-linear approximation and it is suitable to be embedded in existing quantum neural network architectures. In addition, we provide a practical implementation of GQSplines using Pennylane and show that our model outperforms the original QSplines in terms of quality of fitting

    Magnetic interplay between two different lanthanides in a tris-phthalocyaninato complex: a viable synthetic route and detailed investigation in the bulk and on the surface

    Get PDF
    Future applications of molecular units in quantum information technologies require a fine control at the single molecule level. This includes the choice of each functional element, the intramolecular interaction and the robustness of molecules when dispersed on a substrate. Keeping these goals in mind, we designed and synthesized a heterometallic phthalocyaninato-complex including two different lanthanides in each moiety, namely [PcDyPcTbPc*] (Pc being phthalocyanines; and Pc* being 2,3,9,10,16,17,23,24- octahexyl-substituted phthalocyanines). Full magnetic characterization was performed down to the mK temperature range on bulk microcrystals by means of AC susceptibility, DC magnetization (including microSQUID) and specific heat measurements. A weak, yet sizeable, interaction between the two lanthanides is clearly detected by different techniques, altering the magnetic behavior of the single lanthanide as observed in the parent [LnPc2] complexes. Isolated [PcDyPcTbPc*] molecules dispersed on HOPG and the Au surface by liquid phase deposition are proven to maintain their main chemical and magnetic features by combined XPS, XAS and XMCD analysis and to lie with one Pc ligand flat to the surface. Opening of a small but sizable hysteresis loop at 1.8 K is directly observed on both Tb and Dy sites proving the retention of magnetization at the single molecule level

    Human Arboviral Infections in Italy: Past, Current, and Future Challenges

    Get PDF
    : Arboviruses represent a public health concern in many European countries, including Italy, mostly because they can infect humans, causing potentially severe emergent or re-emergent diseases, with epidemic outbreaks and the introduction of endemic circulation of new species previously confined to tropical and sub-tropical regions. In this review, we summarize the Italian epidemiology of arboviral infection over the past 10 years, describing both endemic and imported arboviral infections, vector distribution, and the influence of climate change on vector ecology. Strengthening surveillance systems at a national and international level is highly recommended to be prepared to face potential threats due to arbovirus diffusion

    Validation of the T-Lymphocyte Subset Index (TLSI) as a Score to Predict Mortality in Unvaccinated Hospitalized COVID-19 Patients

    Get PDF
    Lymphopenia has been consistently reported as associated with severe coronavirus disease 2019 (COVID-19). Several studies have described a profound decline in all T-cell subtypes in hospitalized patients with severe and critical COVID-19. The aim of this study was to assess the role of T-lymphocyte subset absolute counts measured at ward admission in predicting 30-day mortality in COVID-19 hospitalized patients, validating a new prognostic score, the T-Lymphocyte Subset Index (TLSI, range 0–2), based on the number of T-cell subset (CD4+ and CD8+) absolute counts that are below prespecified cutoffs. These cutoff values derive from a previously published work of our research group at Policlinico Tor Vergata, Rome, Italy: CD3+CD4+ < 369 cells/µL, CD3+CD8+ < 194 cells/µL. In the present single-center retrospective study, T-cell subsets were assessed on admission to the infectious diseases ward. Statistical analysis was performed using JASP (Version 0.16.2. JASP Team, 2022, The Amsterdam, The Netherlands) and Prism8 (version 8.2.1. GraphPad Software, San Diego, CA, USA). Clinical and laboratory parameters of 296 adult patients hospitalized because of COVID-19 were analyzed. The overall mortality rate was 22.3% (66/296). Survivors (S) had a statistically significant lower TLSI score compared to non-survivors (NS) (p < 0.001). Patients with increasing TLSI scores had proportionally higher rates of 30-day mortality (p < 0.0001). In the multivariable logistic analysis, the TLSI was an independent predictor of in-hospital 30-day mortality (OR: 1.893, p = 0.003). Survival analysis showed that patients with a TLSI > 0 had an increased risk of death compared to patients with a TLSI = 0 (hazard ratio: 2.83, p < 0.0001). The TLSI was confirmed as an early and independent predictor of COVID-19 in-hospital 30-day mortalit

    Evaluation of humoral and cellular response to four vaccines against COVID-19 in different age groups: A longitudinal study

    Get PDF
    To date there has been limited head-to-head evaluation of immune responses to different types of COVID-19 vaccines. A real-world population-based longitudinal study was designed with the aim to define the magnitude and duration of immunity induced by each of four different COVID-19 vaccines available in Italy at the time of this study. Overall, 2497 individuals were enrolled at time of their first vaccination (T0). Vaccine-specific antibody responses induced over time by Comirnaty, Spikevax, Vaxzevria, Janssen Ad26.COV2.S and heterologous vaccination were compared up to six months after immunization. On a subset of Comirnaty vaccinees, serology data were correlated with the ability to neutralize a reference SARS-CoV-2 B strain, as well as Delta AY.4 and Omicron BA.1. The frequency of SARS-CoV-2-specific CD4+ T cells, CD8+ T cells, and memory B cells induced by the four different vaccines was assessed six months after the immunization. We found that mRNA vaccines are stronger inducer of anti-Spike IgG and B-memory cell responses. Humoral immune responses are lower in frail elderly subjects. Neutralization of the Delta AY.4 and Omicron BA.1 variants is severely impaired, especially in older individuals. Most vaccinees display a vaccine-specific T-cell memory six months after the vaccination. By describing the immunological response during the first phase of COVID-19 vaccination campaign in different cohorts and considering several aspects of the immunological response, this study allowed to collect key information that could facilitate the implementation of effective prevention and control measures against SARS-CoV-2

    Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN-Neuroimaging Network

    Get PDF
    Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However, multisite collaborative initiatives are inherently limited by hardware, software, and pulse and sequence design heterogeneities of both clinical and preclinical MRI scanners and the lack of benchmark for acquisition protocols, data analysis, and data sharing. We present the overarching vision that yielded to the constitution of RIN-Neuroimaging Network, a national consortium dedicated to identifying disease and subject-specific in-vivo neuroimaging biomarkers of diverse neurological and neuropsychiatric conditions. This ambitious goal needs efforts toward increasing the diagnostic and prognostic power of advanced MRI data. To this aim, 23 Italian Scientific Institutes of Hospitalization and Care (IRCCS), with technological and clinical specialization in the neurological and neuroimaging field, have gathered together. Each IRCCS is equipped with high- or ultra-high field MRI scanners (i.e., ≥3T) for clinical or preclinical research or has established expertise in MRI data analysis and infrastructure. The actions of this Network were defined across several work packages (WP). A clinical work package (WP1) defined the guidelines for a minimum standard clinical qualitative MRI assessment for the main neurological diseases. Two neuroimaging technical work packages (WP2 and WP3, for clinical and preclinical scanners) established Standard Operative Procedures for quality controls on phantoms as well as advanced harmonized quantitative MRI protocols for studying the brain of healthy human participants and wild type mice. Under FAIR principles, a web-based e-infrastructure to store and share data across sites was also implemented (WP4). Finally, the RIN translated all these efforts into a large-scale multimodal data collection in patients and animal models with dementia (i.e., case study). The RIN-Neuroimaging Network can maximize the impact of public investments in research and clinical practice acquiring data across institutes and pathologies with high-quality and highly-consistent acquisition protocols, optimizing the analysis pipeline and data sharing procedures

    Evaluation of Modified PEG-Anilinoquinazoline Derivatives as Potential Agents for EGFR Imaging in Cancer by Small Animal PET

    Get PDF
    Purpose: The in vivo evaluation of three modified polyethylene glycol (PEG)-anilinoquinazoline derivatives labeled with 124 I, 18 F, and 11 C as potential positron emission tomography (PET) bioprobes for visualizing epidermal growth factor receptor (EGFR) in cancer using small animal PET. Procedures: Xenograft mice with the human glioblastoma cell lines U138MG (lacking EGFR expression) and U87MG.wtEGFR (transfected with an overexpressing human wild-type EGFR gene) were used. Static and dynamic PET imaging was conducted for all three PEGylated compounds. Tumor necrosis, microvessel density, and EGFR levels were evaluated by histopathology and enzyme-linked immunosorbent assay. Results: Nineteen animal models were generated (two U138MG, three U87MG, 14 with both U138MG and U87MG bilateral masses). In static images, a slight increase in tracer uptake was observed in tumors, but in general, there was no retention of tracer uptake over time and no difference in uptake between U138MG and U87MG masses. In addition, no significant uptake was demonstrated in dynamic scans of the 18 F-PEG tracer. No necrosis was present except in four animals. MVD was 9.6 and 48 microvessels/×400 field in the U138GM and U87GM masses

    Differential diagnosis of neurodegenerative dementias with the explainable MRI based machine learning algorithm MUQUBIA

    Get PDF
    Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer's dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    corecore