886 research outputs found
Persistence of internal representations of alternative voluntary actions.
We have investigated a situation in which externally available response alternatives and their internal representations could be dissociated, by suddenly removing some action alternatives from the response space during the interval between the free selection and the execution of a voluntary action. Choice reaction times in this situation were related to the number of initially available response alternatives, rather than to the number of alternatives available effectively available after the change in the external environment. The internal representations of response alternatives appeared to persist after external changes actually made the corresponding action unavailable. This suggests a surprising dynamics of voluntary action representations: counterfactual response alternatives persist, and may even be actively maintained, even when they are not available in reality. Our results highlight a representational basis for the counterfactual course of action. Such representations may play a key role in feelings of regret, disappointment, or frustration. These feelings all involve persistent representation of counterfactual response alternatives that may not actually be available in the environment
A Water Tank Cerenkov Detector for Very High Energy Astroparticles
Extensive airshower detection is an important issue in current astrophysics
endeavours. Surface arrays detectors are a common practice since they are easy
to handle and have a 100% duty cycle. In this work we present an experimental
study of the parameters relevant to the design of a water Cerenkov detector for
high energy airshowers. This detector is conceived as part of the surface array
of the Pierre Auger Project, which is expected to be sensitive to ultra high
energy cosmic rays. In this paper we focus our attention in the geometry of the
tank and its inner liner material, discussing pulse shapes and charge
collections.Comment: Accepted in Nucl. Instr. and Meth. A, LaTex 18 pages, 7 figure
A Study of the Water Cherenkov Calorimeter
The novel idea of water Cherenkov calorimeter made of water tanks as the next
generation neutrino detector for nu factories and nu beams is investigated. A
water tank prototype with a dimension of 1*1*13m^3 is constructed, its
performance is studied and compared with a GEANT4 based Monte Carlo simulation.
By using measured parameters of the water tank, including the light collection
efficiency, attenuation length, angular dependent response etc, a detailed
Monte Carlo simulation demonstrates that the detector performance is excellent
for identifying neutrino charged current events while rejecting neutral current
and wrong-flavor backgrounds.Comment: 19 pages, 14 figures, submitted to NI
Simulation of Water Cerenkov Detectors Using {\sc geant4}
We present a detailed simulation of the performance of water Cerenkov
detectors suitable for use in the Pierre Auger Observatory. Using {\sc geant4},
a flexible object-oriented simulation program, including all known physics
processes, has been developed. The program also allows interactive
visualization, and can easily be modified for any experimental setup.Comment: Talk to be presented at the XI Symposium on Very High Energy Cosmic
Ray Interaction
Opacity calculation for target physics using the ABAKO/RAPCAL code
Radiative properties of hot dense plasmas remain a subject of current interest since they play an important role in inertial confinement fusion (ICF) research, as well as in studies on stellar physics. In particular, the understanding of ICF plasmas requires emissivities and opacities for both hydro-simulations and diagnostics. Nevertheless, the accurate calculation of these properties is still an open question and continuous efforts are being made to develop new models and numerical codes that can facilitate the evaluation of such properties. In this work the set of atomic models ABAKO/RAPCAL is presented, as well as a series of results for carbon and aluminum to show its capability for modeling the population kinetics of plasmas in both LTE and NLTE regimes. Also, the spectroscopic diagnostics of a laser-produced aluminum plasma using ABAKO/RAPCAL is discussed. Additionally, as an interesting application of these codes, fitting analytical formulas for Rosseland and Planck mean opacities for carbon plasmas are reported. These formulas are useful as input data in hydrodynamic simulation of targets where the computation task is so hard that in line computation with sophisticated opacity codes is prohibitive
Judgments of agency are affected by sensory noise without recruiting metacognitive processing
Metacognitive Domains Are Not Aligned along a Dimension of Internal-External Information Source
It is still debated whether metacognition, or the ability to monitor our own mental states, relies on processes that are “domain-general” (a single set of processes can account for the monitoring of any mental process) or “domain-specific” (metacognition is accomplished by a collection of multiple monitoring modules, one for each cognitive domain). It has been speculated that two broad categories of metacognitive processes may exist: those that monitor primarily externally generated versus those that monitor primarily internally generated information. To test this proposed division, we measured metacognitive performance (using m-ratio, a signal detection theoretical measure) in four tasks that could be ranked along an internal-external axis of the source of information, namely memory, motor, visuomotor, and visual tasks. We found correlations between m-ratios in visuomotor and motor tasks, but no correlations between m-ratios in visual and visuomotor tasks, or between motor and memory tasks. While we found no correlation in metacognitive ability between visual and memory tasks, and a positive correlation between visuomotor and motor tasks, we found no evidence for a correlation between motor and memory tasks. This pattern of correlations does not support the grouping of domains based on whether the source of information is primarily internal or external. We suggest that other groupings could be more reflective of the nature of metacognition and discuss the need to consider other non-domain task-features when using correlations as a way to test the underlying shared processes between domains.Peer Reviewe
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
- …
