190 research outputs found

    The ability of contrasting ericaceous ecosystems to buffer nitrogen leaching

    Get PDF
    Much attention has been given to the carbon balance of peatland and heathland ecosystems and their role as global carbon stores. They are also important as buffers for atmospheric nitrogen (N) pollution, locking N into the soil and vegetation through tight nutrient cycling and preventing the leaching of soluble N into freshwater ecosystems. We compared mean annual soil exchangeable N, mineralisation and soil solution nitrogen at three contrasting ericaceous-dominated ecosystems: a lowland heath, an upland heath and an ombrotrophic raised bog at intermediate altitude, all of which were sites of long-term N-manipulation experiments. We expected that soil leachate N would be associated with soil C/N and total soil C, and that sites with higher C % and soil C/N would have greater ability to buffer N deposition before N saturation and leaching began. However, although soil solution N responded to N deposition at all the sites, we found that only the heathland sites were consistent with this expectation. The bog, with the highest C/N and largest C pool, was not the most strongly buffered. The upland heath was most effective at retaining N (extractable NH4+-N +3900 % from control) compared to the lowland heath (extractable NH4+-N +370 % from control) and the bog (extractable NH4+-N, +140–240 % from control). We concluded that the absence of a definable Calluna litter layer at the lowland heath and the bog, and the anoxic conditions at the bog, explained the earlier onset of leaching and that carbon and nitrogen cycles appeared more closely coupled in the heathlands but became decoupled at the bog due to the strong controlling effect of hydrology

    High-resolution wetness index mapping: A useful tool for regional scale wetland management

    Get PDF
    Wetland ecosystems are key habitats for carbon sequestration, biodiversity and ecosystem services, yet in many they localities have been subject to modification or damage. In recent years, there has been increasing focus on effective management and, where possible, restoration of wetlands. Whilst this is highly laudable, practical implementation is limited by the high costs and unpredictable rates of success. Accordingly, there is a need for spatial information to guide restoration, ideally at the regional scale that land managers operate. In this study, we use high-resolution Light Detection and Ranging (LiDAR)-derived elevation, in conjunction with regional soil and land cover maps, to model the wetness potential of an area of conservation importance in north-west England. We use the Compound Topographic Index (CTI) as a measure for the site-specific wetness and potential to be receptive to wetland restoration. The resulting model is in agreement with the regional-scale distribution of wetlands and is clearly influenced by the topographic and soil parameters. An assessment of three representative case studies highlights the small scale features that determine the potential wetness of an area. For each site, the model results conform to the expected patterns of wetness, highlighting restoration and management activity. Furthermore, areas showing high potential wetness that may be suitable for wetland habitat creation, are highlighted. The increasing availability of LiDAR data at regional and national scales will allow studies of this nature to be undertaken at previously unobtainable resolutions. Simple models, such as implemented here, benefit from explainability and relatability and have clear potential for use by managers and conservation agencies involved in wetland restoration

    The Liverpool Statement 2005: Priorities for the European Union/United States Spiral Computed Tomography Collaborative Group

    Get PDF
    The Liverpool Statement 2005 was developed at the Fourth International Lung Cancer Molecular Biomarkers Workshop in Liverpool (October 27-29, 2005) and focused on the priorities for the European Union/United States (EU-US) Spiral Computed Tomography (CT) Collaborative Group. The application of spiral CT technology for early lung cancer screening has gained enormous momentum in the past 5 years. The EU-US Spiral CT Collaboration was initiated in 2001 in Liverpool, and subsequent meetings throughout Europe have resulted in the development of collaborative protocols and minimal data sets that provide a mechanism for the different trial groups to work together, with the ultimate aim to pool results. Considerable progress has been made with major national screening trials in the U.S. and Europe, which include IELCAP, NLST, and NELSON. The major objective of this international collaboration is the planned cross-analysis of the individual studies after they are reported. The EU-US researchers have agreed to a number of long-term objectives and to explore strategic areas for harmonization of complementary investigations

    On the variation of the gauge couplings during inflation

    Get PDF
    It is shown that the evolution of the (Abelian) gauge coupling during an inflationary phase of de Sitter type drives the growth of the two-point function of the magnetic inhomogeneities. After examining the constraints on the variation of the gauge coupling arising in a standard model of inflationary and post-inflationary evolution, magnetohydrodynamical equations are generalized to the case of time evolving gauge coupling. It is argued that large scale magnetic fields can be copiously generated. Other possible implications of the model are outlined.Comment: 5 pages in RevTex style, one figur

    Sedimentation processes in a coral reef embayment : Hanalei Bay, Kauai

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 264 (2009): 140-151, doi:10.1016/j.margeo.2009.05.002.Oceanographic measurements and sediment samples were collected during the summer of 2006 as part of a multi-year study of coastal circulation and the fate of terrigenous sediment on coral reefs in Hanalei Bay, Kauai. The goal of this study was to better understand sediment dynamics in a coral reef-lined embayment where winds, ocean surface waves, and river floods are important processes. During a summer period that was marked by two wave events and one river flood, we documented significant differences in sediment trap collection rates and the composition, grain size, and magnitude of sediment transported in the bay. Sediment trap collection rates were well correlated with combined wave-current near-bed shear stresses during the non-flood periods but were not correlated during the flood. The flood's delivery of fine-grained sediment to the bay initially caused high turbidity and sediment collection rates off the river mouth but the plume dispersed relatively quickly. Over the next month, the flood deposit was reworked by mild waves and currents and the fine-grained terrestrial sediment was advected around the bay and collected in sediment traps away from the river mouth, long after the turbid surface plume was gone. The reworked flood deposits, due to their longer duration of influence and proximity to the seabed, appear to pose a greater long-term impact to benthic coral reef communities than the flood plumes themselves. The results presented here display how spatial and temporal differences in hydrodynamic processes, which result from variations in reef morphology and orientation, cause substantial variations in the deposition, residence time, resuspension, and advection of both reef-derived and fluvial sediment over relatively short spatial scales in a coral reef embayment

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Photoproduction of D±D^{*\pm} mesons associated with a leading neutron

    Full text link
    The photoproduction of D±(2010)D^{*\pm} (2010) mesons associated with a leading neutron has been observed with the ZEUS detector in epep collisions at HERA using an integrated luminosity of 80 pb1^{-1}. The neutron carries a large fraction, {xL>0.2x_L>0.2}, of the incoming proton beam energy and is detected at very small production angles, {θn<0.8\theta_n<0.8 mrad}, an indication of peripheral scattering. The DD^* meson is centrally produced with pseudorapidity {η1.9|\eta| 1.9 GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive DD^* production is 8.85±0.93(stat.)0.61+0.48(syst.)%8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\% in the photon-proton center-of-mass energy range {130<W<280130 <W<280 GeV}. The data suggest that the presence of a hard scale enhances the fraction of events with a leading neutron in the final state.Comment: 28 pages, 4 figures, 2 table

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
    corecore