33 research outputs found

    Rheological Analysis of Asphalt Binders Modified with Hydrated Lime and Titanium Dioxide Nanoparticles

    Get PDF
    The significant increase in traffic on paved roads has accelerated the deterioration of asphalt coatings. Because of this, the use of additives to modify the properties of the asphalt binder has been studied in order to improve the performance in relation to, mainly, permanent deformations and fatigue life. This work evaluates the changes in the rheological properties of CAP 50/70 modified with fractionated particles of hydrated lime and titanium dioxide nanoparticles, obtained from the use of a ball mill. For this purpose, the CAP 50/70 was modified with the addition of fractionated lime particles in the contents of 3%, 5% and 7% by weight of the pure binder and with 3% of ground nano TiO2 (180 nm). The modified samples showed less loss of mass in the short term aging, proving to be an antioxidant alternative. In addition, it was found that the modified binders provided an increase in G* (stiffness parameter) and, consequently, in the maximum Performance Grade (PG) temperature, allowing the use of the studied binders at higher temperatures. The binder modified with a content of 5% hydrated lime presented better results in the tests of permanent deformation (MSCR and LAS). The decrease in TiO2 granulometry increased the integrity of the binder and made it more sensitive to deformations under temperature variations, however, milled titanium dioxide showed a positive result in increasing the resistance of the asphalt binder to fatigue when compared to the binder with nano TiO2 220 nm. Finally, it was possible to establish that the addition of fractionated particles of hydrated lime to CAP 50/70 is a viable and effective technique that meets the requirements of DNIT for use in paving and that the incorporation of ground nano TiO2 (180 nm) attributed to the asphalt binder 50/70 higher working temperature in the field

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Measurement of electrons from beauty-hadron decays in p-Pb collisions at sNN=5.02 \sqrt{s_{\mathrm{NN}}}=5.02 TeV and Pb-Pb collisions at sNN=2.76 \sqrt{s_{\mathrm{NN}}}=2.76 TeV

    No full text
    The production of beauty hadrons was measured via semi-leptonic decays at mid-rapidity with the ALICE detector at the LHC in the transverse momentum interval 1<pT_{T} < 8 GeV/c in minimum-bias p-Pb collisions at sNN=5.02 \sqrt{s_{\mathrm{NN}}}=5.02 TeV and in 1.3 < pT_{T} < 8 GeV/c in the 20% most central Pb-Pb collisions at sNN=2.76 \sqrt{s_{\mathrm{NN}}}=2.76 TeV. The pp reference spectra at sNN=5.02 \sqrt{s_{\mathrm{NN}}}=5.02 TeV and s=2.76 \sqrt{s}=2.76 TeV, needed for the calculation of the nuclear modification factors RpPb_{pPb} and RPbPb_{PbPb}, were obtained by a pQCD-driven scaling of the cross section of electrons from beauty-hadron decays measured at s=7 \sqrt{s}=7 TeV. In the pT_{T} interval 3 < pT_{T} < 8 GeV/c, a suppression of the yield of electrons from beauty-hadron decays is observed in Pb-Pb compared to pp collisions. Towards lower pT_{T}, the RPbPb_{PbPb} values increase with large systematic uncertainties. The RpPb_{pPb} is consistent with unity within systematic uncertainties and is well described by theoretical calculations that include cold nuclear matter effects in p-Pb collisions. The measured RpPb_{pPb} and these calculations indicate that cold nuclear matter effects are small at high transverse momentum also in Pb-Pb collisions. Therefore, the observed reduction of RPbPb_{PbPb} below unity at high pT_{T} may be ascribed to an effect of the hot and dense medium formed in Pb-Pb collisions

    Evolution of the longitudinal and azimuthal structure of the near-side jet peak in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    No full text
    In two-particle angular correlation measurements, jets give rise to a near-side peak, formed by particles associated to a higher-pT trigger particle. Measurements of these correlations as a function of pseudorapidity (Δη) and azimuthal (Δφ) differences are used to extract the centrality and pT dependence of the shape of the near-side peak in the pT range 1<pT<8 GeV/c in Pb-Pb and pp collisions at sNN = 2.76 TeV. A combined fit of the near-side peak and long-range correlations is applied to the data and the peak shape is quantified by the variance of the distributions. While the width of the peak in the Δφ direction is almost independent of centrality, a significant broadening in the Δη direction is found from peripheral to central collisions. This feature is prominent for the low-pT region and vanishes above 4 GeV/c. The widths measured in peripheral collisions are equal to those in pp collisions in the Δφ direction and above 3 GeV/c in the Δη direction. Furthermore, for the 10% most central collisions and 1<pT,assoc< 2 GeV/c, 1<pT,trig< 3 GeV/c, a departure from a Gaussian shape is found: a depletion develops around the center of the peak. The results are compared to A Multi-Phase Transport (AMPT) model simulation as well as other theoretical calculations indicating that the broadening and the development of the depletion are connected to the strength of radial and longitudinal flow

    Anomalous evolution of the near-side jet peak shape in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    No full text
    The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a pT region inaccessible by direct jet identification. In these measurements pseudorapidity (Δη) and azimuthal (Δφ) differences are used to extract the shape of the near-side peak formed by particles associated with a higher pT trigger particle (1<pT,trig<8 GeV/c). A combined fit of the near-side peak and long-range correlations is applied to the data allowing the extraction of the centrality evolution of the peak shape in Pb-Pb collisions at sNN=2.76 TeV. A significant broadening of the peak in the Δη direction at low pT is found from peripheral to central collisions, which vanishes above 4 GeV/c, while in the Δφ direction the peak is almost independent of centrality. For the 10% most central collisions and 1<pT,assoc<2 GeV/c, 1<pT,trig<3 GeV/c a novel feature is observed: a depletion develops around the center of the peak. The results are compared to pp collisions at the same center of mass energy and ampt model simulations. The comparison to the investigated models suggests that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow

    Measuring KS0^0_{\rm S}K±^{\rm \pm} interactions using Pb-Pb collisions at sNN=2.76{\sqrt{s_{\rm NN}}=2.76} TeV

    No full text
    We present the first ever measurements of femtoscopic correlations between the KS0 and K ± particles. The analysis was performed on the data from Pb–Pb collisions at sNN=2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for KS0K− are found to be equal within the experimental uncertainties to those for KS0K+ . Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the a0 resonance are tested. Our results are also compatible with the interpretation of the a0 having a tetraquark structure instead of that of a diquark

    Relative particle yield fluctuations in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    No full text
    First results on K/π\pi, p/π\pi and K/p fluctuations are obtained with the ALICE detector at the CERN LHC as a function of centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV. The observable νdyn\nu_{\rm dyn}, which is defined in terms of the moments of particle multiplicity distributions, is used to quantify the magnitude of dynamical fluctuations of relative particle yields and also provides insight into the correlation between particle pairs. This study is based on a novel experimental technique, called the Identity Method, which allows one to measure the moments of multiplicity distributions in case of incomplete particle identification. The results for p/π\pi show a change of sign in νdyn\nu_{\rm dyn} from positive to negative towards more peripheral collisions. For central collisions, the results follow the smooth trend of the data at lower energies and νdyn\nu_{\rm dyn} exhibits a change in sign for p/π\pi and K/p.First results on K/π\hbox {K}/\pi , p/π\hbox {p}/\pi and K/p fluctuations are obtained with the ALICE detector at the CERN LHC as a function of centrality in  Pb–Pb \text{ Pb--Pb } collisions at sNN=2.76 TeV\sqrt{s_\mathrm{{NN}}} =2.76\hbox { TeV} . The observable νdyn\nu _{\mathrm{dyn}} , which is defined in terms of the moments of particle multiplicity distributions, is used to quantify the magnitude of dynamical fluctuations of relative particle yields and also provides insight into the correlation between particle pairs. This study is based on a novel experimental technique, called the Identity Method, which allows one to measure the moments of multiplicity distributions in case of incomplete particle identification. The results for p/π\hbox {p}/\pi show a change of sign in νdyn\nu _{\mathrm{dyn}} from positive to negative towards more peripheral collisions. For central collisions, the results follow the smooth trend of the data at lower energies and νdyn\nu _{\mathrm{dyn}} exhibits a change in sign for p/π\hbox {p}/\pi and K/p
    corecore