6,153 research outputs found

    Born-Infeld Type Phantom Model in the ωω\omega-\omega' Plane

    Full text link
    In this paper, we investigate the dynamics of Born-Infeld(B-I) phantom model in the ωω\omega-\omega' plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to NN(the logarithm of the scale factor aa). We find the scalar field equation of motion in ωω\omega-\omega' plane, and show mathematically the property of attractor solutions which correspond to ωϕ1\omega_\phi\sim-1, Ωϕ=1\Omega_\phi=1, which avoid the "Big rip" problem and meets the current observations well.Comment: 6 pages, 3 figures, some references adde

    LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model

    Full text link
    In the quasi-inert Higgs doublet model, we study the LHC diphoton rate for a standard model-like Higgs boson and the top quark forward-backward asymmetry at Tevatron. Taking into account the constraints from the vacuum stability, unitarity, electroweak precision tests, flavor physics and the related experimental data of top quark, we find that compared with the standard model prediction, the diphoton rate of Higgs boson at LHC can be enhanced due to the light charged Higgs contributions, while the measurement of the top quark forward-backward asymmetry at Tevatron can be explained to within 1σ1\sigma due to the non-standard model neutral Higgs bosons contributions. Finally, the correlations between the two observables are discussed.Comment: 14 pages, 5 figues. Version to appear in JHEP, some references adde

    Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution

    Get PDF
    Vertically aligned p-silicon nanowire (SiNW) arrays have been extensively investigated in recent years as promising photocathodes for solar-driven hydrogen evolution. However, the fabrication of SiNW photocathodes with both high photoelectrocatalytic activity and long-term operational stability using a simple and affordable approach is a challenging task. Herein, we report conformal and continuous deposition of a di-cobalt phosphide (Co2P) layer on lithography-patterned highly ordered SiNW arrays via a cost-effective drop-casting method followed by a low-temperature phosphorization treatment. The as-deposited Co2P layer consists of crystalline nanoparticles and has an intimate contact with SiNWs, forming a well-defined SiNW@Co2P core/shell nanostructure. The conformal and continuous Co2P layer functions as a highly efficient catalyst capable of substantially improving the photoelectrocatalytic activity for the hydrogen evolution reaction (HER) and effectively passivates the SiNWs to protect them from photo-oxidation, thus prolonging the lifetime of the electrode. As a consequence, the SiNW@Co2P photocathode with an optimized Co2P layer thickness exhibits a high photocurrent density of -21.9 mA.cm(-2) at 0 V versus reversible hydrogen electrode and excellent operational stability up to 20 h for solar-driven hydrogen evolution, outperforming many nanostructured silicon photocathodes reported in the literature. The combination of passivation and catalytic functions in a single continuous layer represents a promising strategy for designing high-performance semiconductor photoelectrodes for use in solar-driven water splitting, which may simplify fabrication procedures and potentially reduce production costsThis work was funded by ERDF funds through the Portuguese Operational Programme for Competitiveness and Internationalization COMPETE 2020, and national funds through FCT – The Portuguese Foundation for Science and Technology, under the project “PTDC/CTM-ENE/2349/2014” (Grant Agreement No. 016660). The work is also partially funded by the Portugal-China Bilateral Collaborative Programme (FCT/21102/28/12/2016/S). L. F. Liu acknowledges the financial support of the FCT Investigator Grant (IF/01595/2014) and Exploratory Grant (IF/01595/2014/CP1247/CT0001). L. Qiao acknowledges the financial support of the Ministry of Science and Technology of China (Grant Agreement No. 2016YFE0132400).info:eu-repo/semantics/publishedVersio

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Graphene plasmonics

    Full text link
    Two rich and vibrant fields of investigation, graphene physics and plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics. The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges, from terahertz to the visible, with extremely high speed, low driving voltage, low power consumption and compact sizes. Here we review the field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version available only at publisher's web site

    Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin

    Get PDF
    BACKGROUND: Colon adenocarcinomas are refractory to a number of widely used anticancer agents. Multifactorial mechanisms have been implicated in this intrinsically resistant phenotype, including deregulation of cell death pathways. In this regard, the p53 protein has a well established role in the control of tumor cell response to DNA damaging agents; however, the relationship between p53-driven genes and drug sensitivity remains controversial. The present study investigates the role of the p53/p21 system in the response of human colon carcinoma cells to treatment with the cytotoxic agent doxorubicin (DOX) and the possibility to modify the therapeutic index of DOX by modulation of p53 and/or p21 protein levels. METHODS: The relationship between p53 and p21 protein levels and the cytotoxic effect of DOX was investigated, by MTT assay and western blot analysis, in HCT116 (p53-positive) and HT29 (p53-negative) colon cancer cells. We then assessed the effects of DOX in two isogenic cell lines derived from HCT116 by abrogating the expression and/or function of p53 and p21 (HCT116-E6 and HCT116 p21-/-, respectively). Finally, we evaluated the effect of pre-treatment with the piperidine nitroxide Tempol (TPL), an agent that was reported to induce p21 expression irrespective of p53 status, on the cytotoxicity of DOX in the four cell lines. Comparisons of IC50 values and apoptotic cell percentages were performed by ANOVA and Bonferroni's test for independent samples. C.I. calculations were performed by the combination Index method. RESULTS: Our results indicate that, in the colon carcinoma cell lines tested, sensitivity to DOX is associated with p21 upregulation upon drug exposure, and DOX cytotoxicity is potentiated by pre-treatment with TPL, but only in those cell lines in which p21 can be upregulated. CONCLUSIONS: p21 induction may significantly contribute to the response of colon adenocarcinomas cells to DOX treatment; and small molecules that can exploit p53-independent pathways for p21 induction, such as TPL, may find a place in chemotherapeutic protocols for the clinical management of colorectal cancer, where p53 function is often lost, due to genetic or epigenetic defects or to post-transcriptional inactivating mechanisms

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore