5 research outputs found

    An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis

    Full text link
    Amphotericin B (AmpB) is active against leishmaniasis, but its use is hampered due to its high toxicity observed in patients. In this study, a nanoparticles-delivery system for AmpB (NQC-AmpB), containing chitosan and chondroitin sulfate molecules, was evaluated in BALB/c mice against Leishmania amazonensis. An in vivo biodistribution study, including biochemical and toxicological evaluations, was performed to evaluate the toxicity of AmpB. Nanoparticles were radiolabeled with technetium-99m and injected in mice. The products presented a similar biodistribution in the liver, spleen, and kidneys of the animals. Free AmpB induced alterations in the body weight of the mice, which, in the biochemical analysis, indicated hepatic and renal injury, as well as morphological damage to the kidneys of the animals. In general, no significant organic alteration was observed in the animals treated with NQC-AmpB. Mice were infected with L. amazonensis and treated with the nanoparticles or free AmpB; then, parasitological and immunological analyses were performed. The NQC-AmpB group, as compared to the control groups, presented significant reductions in the lesion size and in the parasite burden in all evaluated organs. These animals presented significantly higher levels of IFN-Îł and IL-12, and low levels of IL-4 and IL-10, when compared to the control groups. The NQC-AmpB system was effective in reducing the infection in the animals, and proved to be effective in diminishing the toxicity evoked by AmpB, which was observed when it was administered alone. In conclusion, NQC-AmpB could be considered a viable possibility for future studies in the treatment of leishmaniasisThis work was supported by grants from PrĂł-Reitoria de Pesquisa from UFMG (Edital 01/2014), Instituto Nacional de CiĂȘncia e Tecnologia em Nano-biofarmacĂȘutica (INCT-Nanobiofar), FAPEMIG (CBB-APQ-00496-11 and CBB-APQ-00819-12), and CNPq (APQ-472090/2011-9 and APQ-482976/2012-8). MACF is a grant recipient of FAPEMIG/CAPES. EAFC, VNC, and AAGF are grant recipients of CNPq. Eduardo AF Coelho and AndrĂ© AG Faraco are co-senior authors of this stud

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76$ TeV

    No full text
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2v_2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at sNN=2.76\sqrt{s_{_{\rm NN}}} =2.76 TeV. The two-particle correlator ⟹cos⁥(φα−φÎČ)⟩\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle, calculated for different combinations of charges α\alpha and ÎČ\beta, is almost independent of v2v_2 (for a given centrality), while the three-particle correlator ⟹cos⁥(φα+φÎČ−2Κ2)⟩\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle scales almost linearly both with the event v2v_2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2v_2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level

    Constraining the magnitude of the chiral magnetic effect with event shape engineering in Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions at √sNN=2.76 TeV. The two-particle correlator 〈cos⁥(φα−φÎČ)〉, calculated for different combinations of charges α and ÎČ, is almost independent of v2 (for a given centrality), while the three-particle correlator 〈cos⁥(φα+φÎČ−2Κ2)〉 scales almost linearly both with the event v2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10–50% centrality interval is found to be 26–33% at 95% confidence level
    corecore