41 research outputs found

    Nutriomes and nutrient arrays - the key to personalised nutrition for DNA damage prevention and cancer growth control

    Get PDF
    DNA damage at the base-sequence, epigenome and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability and DNA repair. In this paper I describe and propose the use of high-throughput nutrient array systems with high content analysis diagnostics of DNA damage, cell death and cell growth for defining, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control

    Evaluation of gammah2ax in buccal cells as a molecular biomarker of DNA damage in Alzheimer’s disease in the AIBL study of ageing

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. In response to double-stranded breaks (DSBs) in chromosomal DNA, H2AX (a member of histone H2A family) becomes phosphorylated to form γH2AX. Although increased levels of γH2AX have been reported in the neuronal nuclei of Alzheimer’s disease (AD) patients, the understanding of γH2AX responses in buccal nuclei of individuals with mild cognitive impairment (MCI) and AD remain unexplored. In the current study, endogenous γH2AX was measured in buccal cell nuclei from MCI (n = 18) or AD (n = 16) patients and in healthy controls (n = 17) using laser scanning cytometry (LSC). The γH2AX level was significantly elevated in nuclei of the AD group compared to the MCI and control group, and there was a concomitant increase in P-trend for γH2AX from the control group through MCI to the AD group. Receiver-operating characteristic curves were carried out for different γH2AX parameters; γH2AX in nuclei resulted in the greatest area under the curve value of 0.7794 (p = 0.0062) with 75% sensitivity and 70% specificity for the identification of AD patients from control. In addition, nuclear circularity (a measure of irregular nuclear shape) was significantly higher in the buccal cell nuclei from the AD group compared with the MCI and control groups. Additionally, there was a positive correlation between the nuclear circularity and γH2AX signals. The results indicated that increased DNA damage is associated with AD

    Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice

    Get PDF
    Nutrigenetic research examines the effects of inter-individual differences in genotype on responses to nutrients and other food components, in the context of health and of nutrient requirements. A practical application of nutrigenetics is the use of personal genetic information to guide recommendations for dietary choices that are more efficacious at the individual or genetic subgroup level relative to generic dietary advice. Nutrigenetics is unregulated, with no defined standards, beyond some commercially adopted codes of practice. Only a few official nutrition-related professional bodies have embraced the subject, and, consequently, there is a lack of educational resources or guidance for implementation of the outcomes of nutrigenetic research. To avoid misuse and to protect the public, personalised nutrigenetic advice and information should be based on clear evidence of validity grounded in a careful and defensible interpretation of outcomes from nutrigenetic research studies. Evidence requirements are clearly stated and assessed within the context of state-of-the-art ‘evidence-based nutrition’. We have developed and present here a draft framework that can be used to assess the strength of the evidence for scientific validity of nutrigenetic knowledge and whether ‘actionable’. In addition, we propose that this framework be used as the basis for developing transparent and scientifically sound advice to the public based on nutrigenetic tests. We feel that although this area is still in its infancy, minimal guidelines are required. Though these guidelines are based on semiquantitative data, they should stimulate debate on their utility. This framework will be revised biennially, as knowledge on the subject increases

    Fexinidazole – A New Oral Nitroimidazole Drug Candidate Entering Clinical Development for the Treatment of Sleeping Sickness

    Get PDF
    This article describes the preclinical profile of fexinidazole, a new drug candidate with the potential to become a novel, oral, safe and effective short-course treatment for curing both stage 1 and 2 human African trypanosomiasis and replace the old and highly problematic treatment modalities available today. Fexinidazole is orally available and rapidly metabolized in two metabolites having equivalent biological activity to the parent and contributing significantly to the in vivo efficacy in animal models of both stage 1 and 2 HAT. Animal toxicology studies indicate that fexinidazole has an excellent safety profile, with no particular issues identified. Fexinidazole is a 5-nitroimidazole and, whilst it is Ames-positive, it is devoid of any genetic toxicity in mammalian cells and therefore does not pose a genotoxic risk for use in man. Fexinidazole, which was rediscovered through a process of compound mining, is the first new drug candidate for stage 2 HAT having entered clinical trials in thirty years, and has the potential to revolutionize therapy of this fatal disease at a cost that is acceptable in the endemic regions

    Mycoplasma pneumoniae infections, 11 countries in Europe and Israel, 2011 to 2016

    Get PDF
    Background: Mycoplasma pneumoniae is a leading cause of community-acquired pneumonia, with large epidemics previously described to occur every 4 to 7 years. Aim: To better understand the diagnostic methods used to detect M. pneumoniae; to better understand M. pneumoniae testing and surveillance in use; to identify epidemics; to determine detection number per age group, age demographics for positive detections, concurrence of epidemics and annual peaks across geographical areas; and to determine the effect of geographical location on the timing of epidemics. Methods: A questionnaire was sent in May 2016 to Mycoplasma experts with national or regional responsibility within the ESCMID Study Group for Mycoplasma and Chlamydia Infections in 17 countries across Europe and Israel, retrospectively requesting details on M. pneumoniae-positive samples from January 2011 to April 2016. The Moving Epidemic Method was used to determine epidemic periods and effect of country latitude across the countries for the five periods under investigation. Results: Representatives from 12 countries provided data on M. pneumoniae infections, accounting for 95,666 positive samples. Two laboratories initiated routine macrolide resistance testing since 2013. Between 2011 and 2016, three epidemics were identified: 2011/12, 2014/15 and 2015/16. The distribution of patient ages for M. pneumoniae-positive samples showed three patterns. During epidemic years, an association between country latitude and calendar week when epidemic periods began was noted. Conclusions: An association between epidemics and latitude was observed. Differences were noted in the age distribution of positive cases and detection methods used and practice. A lack of macrolide resistance monitoring was noted

    Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratio per 1 s.d. of the risk score (∼6 alleles) (95% confidence interval) = 1.24 (1.20-1.27), P = 5.05 × 10‾⁴⁹), and we observed a 3.7-fold difference in COPD risk between individuals in the highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in genes for development, elastic fibers and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.This work was funded by a Medical Research Council (MRC) strategic award to M.D.T., I.P.H., D.S. and L.V.W. (MC_PC_12010). This research has been conducted using the UK Biobank Resource under application 648. This article presents independent research funded partially by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the UK Department of Health. This research used the ALICE and SPECTRE High-Performance Computing Facilities at the University of Leicester. Additional acknowledgments and funding details can be found in the Supplementary Note
    corecore