362 research outputs found

    Cerebrospinal Fluid Tau Protein Levels and F-18-Fluorodeoxyglucose Positron Emission Tomography in the Differential Diagnosis of Alzheimer's Disease

    Get PDF
    Aims: In this study, we aimed to compare cerebrospinal fluid (CSF) levels of total tau (t-tau), phosphorylated tau (p-tau(181)) and positron emission tomography with F-18-fluorodeoxyglucose (FDG-PET) in the differential diagnosis of Alzheimer's disease (AD) under clinical conditions. Method: In a cross-sectional, blinded, single-center study, we examined a sample of 75 unselected memory clinic patients with clinical diagnoses of dementia of Alzheimer type (DAT; n = 24), amnestic mild cognitive impairment (MCI; n = 16), other dementias (n = 13) and nondemented controls (n = 22). Discriminative accuracy, sensitivity and specificity were calculated and compared using ROC analyses. Results: p-tau(181) and FDG-PET were comparable in separating DAT from controls (sensitivity: 67 vs. 79%; specificity: 91% for both) and patients with other dementias (sensitivity: 71 vs. 79%; specificity: 100% for both). The sensitivity of p-tau 181 in differentiating MCI patients from controls was significantly (p < 0.05) superior to that of FDG-PET (75 vs. 44%) at a comparably high specificity (82 vs. 91%); t-tau measures were less accurate in all analyses. Conclusions: FDG-PET and CSF p-tau(181) levels are able to discriminate DAT in heterogeneous and unselected samples with a high accuracy. CSF p-tau(181) might be somewhat superior for a sensitive detection of patients with MCI. Copyright (C) 2010 S. Karger AG, Base

    Open-Access-Transformation mit DeepGreen: Gemeinsam den (grünen) Schatz heben

    Get PDF
    Das von der DFG seit 2016 geförderte Projekt DeepGreen will die Open-Access-Transformation der deutschen Wissenschaft unterstützen, indem Artikel, sofern lizenzrechtlich erlaubt, automatisiert in den grünen Weg von Open Access überführt werden. Dazu haben die Projektpartner – die Bibliotheksverbünde Kooperativer Bibliotheksverbund Berlin-Brandenburg (KOBV) und Bibliotheksverbund Bayern (BVB), die Bayerische Staatsbibliothek (BSB), die Universitätsbibliothek der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und die Universitätsbibliothek der Technischen Universität Berlin (TU Berlin) sowie das Helmholtz Open Science Koordinationsbüro am Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ) – prototypisch eine Datendrehscheibe auf Grundlage existierender Softwarebausteine entwickelt. Die beteiligten Verlage können hiermit Metadaten und Volltexte zyklisch über definierte Schnittstellen abliefern, die Daten werden anschließend rechtskonform an die dazu berechtigten institutionellen Repositorien weitergeleitet. Als Pilotpartner konnten S. Karger und SAGE Publications gewonnen werden, weitere Verlage beteiligten sich mit der Zusendung von Testdaten. DeepGreen hat sich in der Projektphase 2016-2017 auf die sogenannten Allianz-Lizenzen fokussiert, die seit 2011 zwischen Verlagen und Bibliotheken verhandelt wurden. Sie beinhalten spezifische Regelungen zum grünen Open Access, die einen enormen Mehrwert gegenüber den üblichen „Self-archiving policies“, also den Regelungen zur Zweitveröffentlichung bei Verlagen darstellen: Autorisierte Autorinnen und Autoren und deren Einrichtungen dürfen ihre Publikationen in der Regel in der publizierten PDF-Version nach verkürzten Embargofristen bzw. teils unmittelbar in ein Repositorium ihrer Wahl einstellen und öffentlich zugänglich machen. Praktisch wurde von dieser Möglichkeit bisher nur sehr eingeschränkt Gebrauch gemacht, DeepGreen soll dies perspektivisch ändern. Darüber hinaus erprobt DeepGreen in der zweiten Projektphase 2018-2020 die Ausweitung des Systems auf andere Lizenzmodelle und neue Datenabnehmer

    Characterization of early disease status in treatment-naive male paediatric patients with Fabry disease enrolled in a randomized clinical trial.

    Get PDF
    Trial designThis analysis characterizes the degree of early organ involvement in a cohort of oligo-symptomatic untreated young patients with Fabry disease enrolled in an ongoing randomized, open-label, parallel-group, phase 3B clinical trial.MethodsMales aged 5-18 years with complete α-galactosidase A deficiency, without symptoms of major organ damage, were enrolled in a phase 3B trial evaluating two doses of agalsidase beta. Baseline disease characteristics of 31 eligible patients (median age 12 years) were studied, including cellular globotriaosylceramide (GL-3) accumulation in skin (n = 31) and kidney biopsy (n = 6; median age 15 years; range 13-17 years), renal function, and glycolipid levels (plasma, urine).ResultsPlasma and urinary GL-3 levels were abnormal in 25 of 30 and 31 of 31 patients, respectively. Plasma lyso-GL-3 was elevated in all patients. GL-3 accumulation was documented in superficial skin capillary endothelial cells (23/31 patients) and deep vessel endothelial cells (23/29 patients). The mean glomerular filtration rate (GFR), measured by plasma disappearance of iohexol, was 118.1 mL/min/1.73 m(2) (range 90.4-161.0 mL/min/1.73 m(2)) and the median urinary albumin/creatinine ratio was 10 mg/g (range 4.0-27.0 mg/g). On electron microscopy, renal biopsy revealed GL-3 accumulation in all glomerular cell types (podocytes and parietal, endothelial, and mesangial cells), as well as in peritubular capillary and non-capillary endothelial, interstitial, vascular smooth muscle, and distal tubules/collecting duct cells. Lesions indicative of early Fabry arteriopathy and segmental effacement of podocyte foot processes were found in all 6 patients.ConclusionsThese data reveal that in this small cohort of children with Fabry disease, histological evidence of GL-3 accumulation, and cellular and vascular injury are present in renal tissues at very early stages of the disease, and are noted before onset of microalbuminuria and development of clinically significant renal events (e.g. reduced GFR). These data give additional support to the consideration of early initiation of enzyme replacement therapy, potentially improving long-term outcome.Trial registrationClinicalTrials.gov NCT00701415

    Cognitive reserve impacts on inter-individual variability in resting-state cerebral metabolism in normal aging

    Full text link
    peer reviewedThere is a great deal of heterogeneity in the impact of aging on cognition and cerebral functioning. One potential factor contributing to individual differences among the elders is the cognitive reserve, which designates the partial protection from the deleterious effects of aging that lifetime experience provides. Neuroimaging studies examining task-related activation in elderly people suggested that cognitive reserve takes the form of more efficient use of brain networks and/or greater ability to recruit alternative networks to compensate for age-related cerebral changes. In this multi-centre study, we examined the relationships between cognitive reserve, as measured by education and verbal intelligence, and cerebral metabolism at rest (FDG-PET) in a sample of 74 healthy older participants. Higher degree of education and verbal intelligence was associated with less metabolic activity in the right posterior temporoparietal cortex and the left anterior intraparietal sulcus. Functional connectivity analyses of resting-state fMRI images in a subset of 41 participants indicated that these regions belong to the default mode network and the dorsal attention network respectively. Lower metabolism in the temporoparietal cortex was also associated with better memory abilities. The findings provide evidence for an inverse relationship between cognitive reserve and resting-state activity in key regions of two functional networks respectively involved in internal mentation and goal-directed attention

    Abnormal Integrity of Corticocortical Tracts in Mild Cognitive Impairment: A Diffusion Tensor Imaging Study

    Get PDF
    Mild cognitive impairment (MCI) has been defined as a transitional state between normal aging and Alzheimer disease. Diffusion tensor imaging (DTI) can estimate the microstructural integrity of white matter tracts in MCI. We evaluated the microstructural changes in the white matter of MCI patients with DTI. We recruited 11 patients with MCI who met the working criteria of MCI and 11 elderly normal controls. The mean diffusivity (MD) and fractional anisotropy (FA) were measured in 26 regions of the brain with the regions of interest (ROIs) method. In the MCI patients, FA values were significantly decreased in the hippocampus, the posterior limb of the internal capsule, the splenium of corpus callosum, and in the superior and inferior longitudinal fasciculus compared to the control group. MD values were significantly increased in the hippocampus, the anterior and posterior limbs of the internal capsules, the splenium of the corpus callosum, the right frontal lobe, and in the superior and the inferior longitudinal fasciculus. Microstructural changes of several corticocortical tracts associated with cognition were identified in patients with MCI. FA and MD values of DTI may be used as novel biomarkers for the evaluation of neurodegenerative disorders

    Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data

    Get PDF
    Diffusion tensor imaging (DTI) based assessment of white matter fiber tract integrity can support the diagnosis of Alzheimer’s disease (AD). The use of DTI as a biomarker, however, depends on its applicability in a multicenter setting accounting for effects of different MRI scanners. We applied multivariate machine learning (ML) to a large multicenter sample from the recently created framework of the European DTI study on Dementia (EDSD). We hypothesized that ML approaches may amend effects of multicenter acquisition. We included a sample of 137 patients with clinically probable AD (MMSE 20.6±5.3) and 143 healthy elderly controls, scanned in nine different scanners. For diagnostic classification we used the DTI indices fractional anisotropy (FA) and mean diffusivity (MD) and, for comparison, gray matter and white matter density maps from anatomical MRI. Data were classified using a Support Vector Machine (SVM) and a Naïve Bayes (NB) classifier. We used two cross-validation approaches, (i) test and training samples randomly drawn from the entire data set (pooled cross-validation) and (ii) data from each scanner as test set, and the data from the remaining scanners as training set (scanner-specific cross-validation). In the pooled cross-validation, SVM achieved an accuracy of 80% for FA and 83% for MD. Accuracies for NB were significantly lower, ranging between 68% and 75%. Removing variance components arising from scanners using principal component analysis did not significantly change the classification results for both classifiers. For the scanner-specific cross-validation, the classification accuracy was reduced for both SVM and NB. After mean correction, classification accuracy reached a level comparable to the results obtained from the pooled cross-validation. Our findings support the notion that machine learning classification allows robust classification of DTI data sets arising from multiple scanners, even if a new data set comes from a scanner that was not part of the training sample

    Nervous system and Fabry disease, from symptoms to diagnosis: damage evaluation and follow-up in adult patients, enzyme replacement, and support therapy

    Get PDF
    The X-linked genetic Fabry disease causes multiorgan lesions due to intracellular storage of the substrate globotriaosylceramide. Neurological involvement ranges from painful, small fiber neuropathy to cerebrovascular disorders to multifocal aggressive forms. Disease identification through proper differential diagnosis and timely assessment of organ damage should guide a careful treatment planning. Mainstay treatment, include enzyme replacement and support therapy. Neurologists have a pivotal role in early instrumental and clinical detection of organ damage. A panel of experts has developed a set of consensus recommendations to guide the approach of neurologists to Fabry disease

    White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI

    Get PDF
    Frontotemporal dementia (FTD) and Alzheimer's disease are sometimes difficult to differentiate clinically because of overlapping symptoms. Using diffusion tensor imaging (DTI) measurements of fractional anisotropy (FA) can be useful in distinguishing the different patterns of white matter degradation between the two dementias. In this study, we performed MRI scans in a 4 Tesla MRI machine including T1-weighted structural images and diffusion tensor images in 18 patients with FTD, 18 patients with Alzheimer's disease and 19 cognitively normal (CN) controls. FA was measured selectively in specific fibre tracts (including corpus callosum, cingulum, uncinate and corticospinal tracts) as well as globally in a voxel-by-voxel analysis. Patients with FTD were associated with reductions of FA in frontal and temporal regions including the anterior corpus callosum (P < 0.001), bilateral anterior (left P < 0.001; right P = 0.005), descending (left P < 0.001; right P = 0.003) cingulum tracts, and uncinate tracts (left P < 0.001; right P = 0.005), compared to controls. Patients with Alzheimer's disease were associated with reductions of FA in parietal, temporal and frontal regions including the left anterior (P = 0.003) and posterior (P = 0.002) cingulum tracts, bilateral descending cingulum tracts (P < 0.001) and left uncinate tracts (P < 0.001) compared to controls. When compared with Alzheimer's disease, FTD was associated with greater reductions of FA in frontal brain regions, whereas no region in Alzheimer's disease showed greater reductions of FA when compared to FTD. In conclusion, the regional patterns of anisotropy reduction in FTD and Alzheimer's disease compared to controls suggest a characteristic distribution of white matter degradation in each disease. Moreover, the white matter degradation seems to be more prominent in FTD than in Alzheimer's disease. Taken together, the results suggest that white matter degradation measured with DTI may improve the diagnostic differentiation between FTD and Alzheimer's disease
    corecore