47 research outputs found
Validation of a Parkinson disease predictive model in a population-based study
Parkinson disease (PD) has a relatively long prodromal period that may permit early identification to reduce diagnostic testing for other conditions when patients are simply presenting with early PD symptoms, as well as to reduce morbidity from fall-related trauma. Earlier identification also could prove critical to the development of neuroprotective therapies. We previously developed a PD predictive model using demographic and Medicare claims data in a population-based case-control study. The area under the receiver-operating characteristic curve (AUC) indicated good performance. We sought to further validate this PD predictive model. In a randomly selected, population-based cohort of 115,492 Medicare beneficiaries aged 66–90 and without PD in 2009, we applied the predictive model to claims data from the prior five years to estimate the probability of future PD diagnosis. During five years of follow-up, we used 2010–2014 Medicare data to determine PD and vital status and then Cox regression to investigate whether PD probability at baseline was associated with time to PD diagnosis. Within a nested case-control sample, we calculated the AUC, sensitivity, and specificity. A total of 2,326 beneficiaries developed PD. Probability of PD was associated with time to PD diagnosis (p<0.001, hazard ratio = 13.5, 95% confidence interval (CI) 10.6–17.3 for the highest vs. lowest decile of probability). The AUC was 83.3% (95% CI 82.5%–84.1%). At the cut point that balanced sensitivity and specificity, sensitivity was 76.7% and specificity was 76.2%. In an independent sample of additional Medicare beneficiaries, we again applied the model and observed good performance (AUC = 82.2%, 95% CI 81.1%–83.3%). Administrative claims data can facilitate PD identification within Medicare and Medicare-aged samples
Adherence to practice parameters in Medicare beneficiaries with amyotrophic lateral sclerosis
OBJECTIVE: Physician adherence to evidence-based clinical practice parameters impacts outcomes of amyotrophic lateral sclerosis (ALS) patients. We sought to investigate compliance with the 2009 practice parameters for treatment of ALS patients in the United States, and sociodemographic and provider characteristics associated with adherence.
METHODS: In this population-based, retrospective cohort study of incident ALS patients in 2009-2014, we included all Medicare beneficiaries age ≥20 with ≥1 International Classification of Diseases, Ninth Revision, Clinical Modification ALS code (335.20) in 2009 and no prior years (N = 8,575). Variables of interest included race/ethnicity, sex, age, urban residence, Area Deprivation Index (ADI), and provider specialty (neurologist vs. non-neurologist). Outcomes were use of practice parameters, which included feeding tubes, non-invasive ventilation (NIV), riluzole, and receiving care from a neurologist.
RESULTS: Overall, 42.9% of patients with ALS received neurologist care. Black beneficiaries (odds ratio [OR] 0.56, 95% confidence interval [CI] 0.47-0.67), older beneficiaries (OR 0.964, 95% CI 0.961-0.968 per year), and those living in disadvantaged areas (OR 0.70, 95% CI 0.61-0.80) received less care from neurologists. Overall, only 26.7% of beneficiaries received a feeding tube, 19.2% NIV, and 15.3% riluzole. Neurologist-treated patients were more likely to receive interventions than other ALS patients: feeding tube (OR 2.80, 95% CI 2.52-3.11); NIV (OR 10.8, 95% CI 9.28-12.6); and riluzole (OR 7.67, 95% CI 6.13-9.58), after adjusting for sociodemographics. These associations remained marked and significant when we excluded ALS patients who subsequently received a code for other diseases that mimic ALS.
CONCLUSIONS: ALS patients treated by neurologists received care consistent with practice parameters more often than those not treated by a neurologist. Black, older, and disadvantaged beneficiaries received less care consistent with the practice parameters
Validation of Parkinson\u27s disease-related questionnaires in South Africa
Background: There are very few epidemiological studies investigating Parkinson\u27s disease (PD) in Africa. The hundreds of local languages and dialects make traditional screening and clinical evaluation tools difficult to use.
Objective: The objective of the study was to validate two commonly used PD questionnaires in an African population.
Methods: The PD Screening Questionnaire (PDSQ) and Parkinson\u27s Disease Questionnaire (PDQ-39) were modified and translated into Afrikaans, Setswana, and isiZulu and administered to a sample of healthy local residents. We assessed the internal consistencies and cluster characteristics of the questionnaires, using a Cronbach\u27s alpha test and exploratory factor analysis. The questionnaires were then administered to a population-based sample of 416 research participants. We evaluated the correlations between the questionnaires and both a timed motor task and the Unified Parkinson\u27s Disease Rating Scale motor subsection 3 (UPDRS3), using locally weighted scatterplot smoothing (LOWESS) regression analysis and Spearman\u27s rank correlation.
Results: Both questionnaires had high overall internal consistency (Cronbach\u27s alpha = 0.86 and 0.95, respectively). The modified PDQ-39 had evidence of five subscales, with Factor 1 explaining 57% and Factor 2 explaining 14%, of the variance in responses. The PDSQ and PDQ-39 scores were correlated with the UPDRS3 score (
Conclusion: The translated PDSQ and PDQ-39 questionnaires demonstrated high internal consistency and correlations with clinical severity of parkinsonism and a timed motor task, suggesting that they are valid tools for field-based epidemiological studies
Medicalized Hotel as an Alternative to Hospital Care for Management of Noncritical COVID-19
Background: Since the first wave of COVID-19, alternatives to conventional hospitalization have been proposed for the provision of different levels of care, ranging from shelter during quarantine to hospital-level medical care. Objective: To describe the adaptation of a hotel by a hospital-at-home team to provide hospital-level care to patients with COVID-19 during the first wave of the pandemic in Barcelona, Spain. Methods: Hospital Clínic de Barcelona (HCB) is a 750-bed, public, tertiary teaching hospital serving 560 000 persons in the metropolitan area of Barcelona, Spain. In March 2020, the hospital-at-home unit was instructed to medicalize a hotel ('health hotel' [HH]) in downtown Barcelona. The aim of this initiative was to help decongest hospitals in the area by admitting patients with low dependency (Barthel Index score >60) and mild to severe COVID-19 from emergency departments or COVID-19 hospital wards, according to Centers for Disease Control and Prevention clinical guideline
A framework for human microbiome research
A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies
Structure, function and diversity of the healthy human microbiome
Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in
part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273
to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander;
U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.;
U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.;
R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.;
R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to
D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and
R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.;
R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was
supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves
and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang,
F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J.
V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.);
DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research;
U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and
R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and
D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research
Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF
DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US
Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL
Laboratory-Directed Research and Development grant 20100034DR and the US
Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research
Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career
Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe
J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by
the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial
Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of
Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis
of the HMPdata was performed using National Energy Research Scientific Computing
resources, the BluBioU Computational Resource at Rice University
Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers
The risk of germline copy number variants (CNVs) in BRCA1 and BRCA2 pathogenic variant carriers in breast cancer is assessed, with CNVs overlapping SULT1A1 decreasing breast cancer risk in BRCA1 carriers.The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.Peer reviewe
Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification
The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes