130 research outputs found

    Exploring gas-phase protein conformations by ion mobility-mass spectrometry

    Get PDF
    Analysis and characterisation of biomolecules using mass spectrometry has advanced over the past decade due to improvements in instrument design and capability; relevant use of complementary techniques; and available experimental and in silico data for comparison with cutting-edge research. This thesis presents ion mobility data, collected on an in-house modified QToF mass spectrometer (the MoQTOF), for a number of protein systems. Two haemoproteins, cytochrome c and haemoglobin, have been characterised and rotationally-averaged collision cross-sections for a number of multimeric species are presented. Intact multiply-charged multimers of the form [xCyt c + nH]z+ where x = 1 (monomer), x = 2 (dimer) and x = 3 (trimer) for cytochrome c have been elucidated and for species with x ≥ 2, reported for the first time. Fragment ions possibly attributed to a novel fragmentation mechanism, native electron capture dissociation, are reported with a brief discussion into their possible production from the dissociation of the gas-phase dimer species. Haemoglobin monomer globin subunits, dimers and intact tetramer have been successfully transferred to the gas phase, and their cross-sections elucidated. Comparisons with in silico computational data have been made and a discussion of the biologically-active tetramer association/dissociation technique is presented. Three further proteins have been studied and their gas-phase collision cross-sections calculated. Two regions of the large Factor H (fH) complement glycoprotein, fH 10-15 and fH 19-20, have been characterised for the first time by ion mobility-mass spectrometry. Much work using nuclear magnetic resonance spectroscopy has previously been achieved to produce structural information of these protein regions, however further biophysical characterisation using mass spectrometry may aid in greater understanding of the interactions these two specific regions have with other biomolecules. The DNA-binding core domain of the tumour suppressor p53 has been characterised and cross-sections produced in the presence and absence of the zinc metal ion that may control the domain’s biological activity. Within this core domain, p53 inactivation mutations have been shown to occur in up to 50% of human cancers, therefore the potential exists to further cancer-fighting activity through research on this region. Anterior Gradient-2 (AGR2) protein facilitates downregulation of p53 in an as yet unclear mechanism. Recent work using peptide aptamers has demonstrated that this downregulation can be disrupted and levels of p53 restored. Collision cross-sections for six peptide aptamers have been calculated, as well as cross-sections for multimers of AGR2 protein. A complex between one aptamer with the protein has also been elucidated. Use of the commercially available Synapt HDMS ion mobility-mass spectrometer at Waters MS Technologies Centre (Manchester, UK) allowed data to be collected for both Factor H protein regions and for the DNA-binding core domain of p53. Data are compared in the appropriate chapters with data collected using the MoQTOF

    Robert Herrick's self-presentation in Hesperides and his Noble numbers

    Get PDF
    Literature has tended to be cut from the moorings of its authorial origins under the influential literary criticism of the past forty years. This thesis is an attempt to re-moor a work of literature to its authorial origins; particularly a work of literature in which the author-poet‘s self-referential markers are so overtly and persistently present as is the case in Hesperides and His Noble Numbers. Although there is a significant overlap between the real-life Herrick and the Hesperidean Herrick, the two figures cannot be regarded as identical. Instead, Herrick‘s deployment of specific genres and not of others, his chosen conventions for ordering a collection of miscellaneous poems, and his adoption of certain conventional poetic stances provide him with a semi-fictionalised way of declaring who he understands himself to be and how he wants himself to be understood. At the same time, the rich classical mythological associations of Herrick‘s title, Hesperides, declare his status as an inheritor of the classical literary tradition, whose hallmark during the Renaissance was the melding of classical, Christian and secular associations into new and complexly polyvalent literary works. For example, Herrick‘s appropriation of the classical mythological figure of Hercules provides him with both a narrative way and an allegorical way of reconciling the so-called secular, or profane poetry of Hesperides with the so-called religious, or divine poetry of Noble Numbers. In Noble Numbers, Herrick reveals new facets of his self-presentation to the reader, whilst also making explicit the theological congruencies between the two works. Herrick‘s religious self-presentation demonstrates his expansive scholarly interests, as well his instinct to include, rather than to exclude, the religious beliefs of others within his syncretistic sense-of-self. Finally, the placement of Noble Numbers after Hesperides is not a signal that Herrick privileged the former, or took his religion less seriously than he did his love for classical poetry, but rather that in Herrick‘s understanding of his world, man‘s fleeting glimpses of God in the secular sphere give way to a fuller comprehension of Him in the divine sphere

    A role for human brain pericytes in neuroinflammation

    Get PDF
    BACKGROUND: Brain inflammation plays a key role in neurological disease. Although much research has been conducted investigating inflammatory events in animal models, potential differences in human brain versus rodent models makes it imperative that we also study these phenomena in human cells and tissue. METHODS: Primary human brain cell cultures were generated from biopsy tissue of patients undergoing surgery for drug-resistant epilepsy. Cells were treated with pro-inflammatory compounds IFNγ, TNFα, IL-1β, and LPS, and chemokines IP-10 and MCP-1 were measured by immunocytochemistry, western blot, and qRT-PCR. Microarray analysis was also performed on late passage cultures treated with vehicle or IFNγ and IL-1β. RESULTS: Early passage human brain cell cultures were a mixture of microglia, astrocytes, fibroblasts and pericytes. Later passage cultures contained proliferating fibroblasts and pericytes only. Under basal culture conditions all cell types showed cytoplasmic NFκB indicating that they were in a non-activated state. Expression of IP-10 and MCP-1 were significantly increased in response to pro-inflammatory stimuli. The two chemokines were expressed in mixed cultures as well as cultures of fibroblasts and pericytes only. The expression of IP-10 and MCP-1 were regulated at the mRNA and protein level, and both were secreted into cell culture media. NFκB nuclear translocation was also detected in response to pro-inflammatory cues (except IFNγ) in all cell types. Microarray analysis of brain pericytes also revealed widespread changes in gene expression in response to the combination of IFNγ and IL-1β treatment including interleukins, chemokines, cellular adhesion molecules and much more. CONCLUSIONS: Adult human brain cells are sensitive to cytokine challenge. As expected 'classical' brain immune cells, such as microglia and astrocytes, responded to cytokine challenge but of even more interest, brain pericytes also responded to such challenge with a rich repertoire of gene expression. Immune activation of brain pericytes may play an important role in communicating inflammatory signals to and within the brain interior and may also be involved in blood brain barrier (BBB) disruption . Targeting brain pericytes, as well as microglia and astrocytes, may provide novel opportunities for reducing brain inflammation and maintaining BBB function and brain homeostasis in human brain disease

    ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways.

    Get PDF
    Leukemia cells rely on two nucleotide biosynthetic pathways, de novo and salvage, to produce dNTPs for DNA replication. Here, using metabolomic, proteomic, and phosphoproteomic approaches, we show that inhibition of the replication stress sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) reduces the output of both de novo and salvage pathways by regulating the activity of their respective rate-limiting enzymes, ribonucleotide reductase (RNR) and deoxycytidine kinase (dCK), via distinct molecular mechanisms. Quantification of nucleotide biosynthesis in ATR-inhibited acute lymphoblastic leukemia (ALL) cells reveals substantial remaining de novo and salvage activities, and could not eliminate the disease in vivo. However, targeting these remaining activities with RNR and dCK inhibitors triggers lethal replication stress in vitro and long-term disease-free survival in mice with B-ALL, without detectable toxicity. Thus the functional interplay between alternative nucleotide biosynthetic routes and ATR provides therapeutic opportunities in leukemia and potentially other cancers.Leukemic cells depend on the nucleotide synthesis pathway to proliferate. Here the authors use metabolomics and proteomics to show that inhibition of ATR reduced the activity of these pathways thus providing a valuable therapeutic target in leukemia

    Adult Human Brain Neural Progenitor Cells (NPCs) and Fibroblast-Like Cells Have Similar Properties In Vitro but Only NPCs Differentiate into Neurons

    Get PDF
    The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC) culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP) of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia), and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs). These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5–6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting AhNPC-based experiments

    Regional and cellular gene expression changes in human Huntington's disease brain

    Get PDF
    Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative disease

    Stroke awareness and knowledge in an Urban New Zealand population

    Get PDF
    © 2015 National Stroke Association. Background Stroke is the third most common cause of death and a major cause of chronic disability in New Zealand. Linked to risk factors that develop across the life-course, stroke is considered to be largely preventable. This study assessed the awareness of stroke risk, symptoMS detection, and prevention behaviors in an urban New Zealand population. Methods Demographics, stroke risk factors awareness, symptoMS responsiveness, and prevention behaviors were evaluated using a structured oral questionnaire. Binomial logistic regression analyses were used to identify predictors of stroke literacy. Results Although personal experience of stroke increased awareness of symptoms and their likeliness to indicate the need for urgent medical attention, only 42.7% of the respondents (n = 850) identified stroke as involving both blood and the brain. Educational attainment at or above a trade certificate, apprenticeship, or diploma increased the awareness of stroke symptoms compared with those with no formal educational attainment. Pacific Island respondents were less likely than New Zealand Europeans to identify a number of stroke risk factors. Ma¯ori, Pacific Island, and Asian respondents were less likely to identify symptoms of stroke and indicate the need for urgent medical attention. Conclusions The variability in stroke awareness and knowledge may suggest the need to enhance stroke-related health literacy that facilitates understanding of risk and of factors that reduce morbidity and mortality after stroke in people of Ma¯ori and Pacific Island descent and in those with lower educational attainment or socioeconomic status. It is therefore important that stroke awareness campaigns include tailored components for target audiences

    Malaria Parasite Schizont Egress Antigen-1 Plays an Essential Role in Nuclear Segregation during Schizogony.

    Get PDF
    Malaria parasites cause disease through repeated cycles of intraerythrocytic proliferation. Within each cycle, several rounds of DNA replication produce multinucleated forms, called schizonts, that undergo segmentation to form daughter merozoites. Upon rupture of the infected cell, the merozoites egress to invade new erythrocytes and repeat the cycle. In human malarial infections, an antibody response specific for the Plasmodium falciparum protein PF3D7_1021800 was previously associated with protection against malaria, leading to an interest in PF3D7_1021800 as a candidate vaccine antigen. Antibodies to the protein were reported to inhibit egress, resulting in it being named schizont egress antigen-1 (SEA1). A separate study found that SEA1 undergoes phosphorylation in a manner dependent upon the parasite cGMP-dependent protein kinase PKG, which triggers egress. While these findings imply a role for SEA1 in merozoite egress, this protein has also been implicated in kinetochore function during schizont development. Therefore, the function of SEA1 remains unclear. Here, we show that P. falciparum SEA1 localizes in proximity to centromeres within dividing nuclei and that conditional disruption of SEA1 expression severely impacts the distribution of DNA and formation of merozoites during schizont development, with a proportion of SEA1-null merozoites completely lacking nuclei. SEA1-null schizonts rupture, albeit with low efficiency, suggesting that neither SEA1 function nor normal segmentation is a prerequisite for egress. We conclude that SEA1 does not play a direct mechanistic role in egress but instead acts upstream of egress as an essential regulator required to ensure the correct packaging of nuclei within merozoites.IMPORTANCE Malaria is a deadly infectious disease. Rationally designed novel therapeutics will be essential for its control and eradication. The Plasmodium falciparum protein PF3D7_1021800, annotated as SEA1, is under investigation as a prospective component of a malaria vaccine, based on previous indications that antibodies to SEA1 interfere with parasite egress from infected erythrocytes. However, a consensus on the function of SEA1 is lacking. Here, we demonstrate that SEA1 localizes to dividing parasite nuclei and is necessary for the correct segregation of replicated DNA into individual daughter merozoites. In the absence of SEA1, merozoites develop defectively, often completely lacking a nucleus, and, consequently, egress is impaired and/or aberrant. Our findings provide insights into the divergent mechanisms by which intraerythrocytic malaria parasites develop and divide. Our conclusions regarding the localization and function of SEA1 are not consistent with the hypothesis that antibodies against it confer protective immunity to malaria by blocking merozoite egress

    Characterisation of PDGF-BB:PDGFRβ signalling pathways in human brain pericytes: evidence of disruption in Alzheimer's disease.

    Full text link
    peer reviewedPlatelet-derived growth factor-BB (PDGF-BB):PDGF receptor-β (PDGFRβ) signalling in brain pericytes is critical to the development, maintenance and function of a healthy blood-brain barrier (BBB). Furthermore, BBB impairment and pericyte loss in Alzheimer's disease (AD) is well documented. We found that PDGF-BB:PDGFRβ signalling components were altered in human AD brains, with a marked reduction in vascular PDGFB. We hypothesised that reduced PDGF-BB:PDGFRβ signalling in pericytes may impact on the BBB. We therefore tested the effects of PDGF-BB on primary human brain pericytes in vitro to define pathways related to BBB function. Using pharmacological inhibitors, we dissected distinct aspects of the PDGF-BB response that are controlled by extracellular signal-regulated kinase (ERK) and Akt pathways. PDGF-BB promotes the proliferation of pericytes and protection from apoptosis through ERK signalling. In contrast, PDGF-BB:PDGFRβ signalling through Akt augments pericyte-derived inflammatory secretions. It may therefore be possible to supplement PDGF-BB signalling to stabilise the cerebrovasculature in AD
    corecore