Human Molecular Genetics, 2006, Vol. 15, No. 6 doi:10.1093/hmg/ddl013 Advance Access published on February 8, 2006

Regional and cellular gene expression changes in human Huntington's disease brain

Angela Hodges^{1,2,†}, Andrew D. Strand³, Aaron K. Aragaki³, Alexandre Kuhn⁴, Thierry Sengstag⁵, Gareth Hughes^{1,2}, Lyn A. Elliston^{1,2}, Cathy Hartog², Darlene R. Goldstein⁴, Doris Thu⁶, Zane R. Hollingsworth⁷, Francois Collin⁸, Beth Synek⁹, Peter A. Holmans¹, Anne B. Young⁷, Nancy S. Wexler^{10,11}, Mauro Delorenzi⁵, Charles Kooperberg³, Sarah J. Augood⁷, Richard L.M. Faull⁶, James M. Olson^{3,‡}, Lesley Jones^{1,2,‡} and Ruth Luthi-Carter^{4,*,‡}

¹Department of Psychological Medicine and ²Department of Medical Genetics, Wales College of Medicine and School of Biosciences, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK, ³Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA, ⁴Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland, ⁵National Center of Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research (ISREC) and Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland, ⁶Department of Anatomy with Radiology, University of Auckland, Private Bag 92019, Auckland, New Zealand, ⁷MassGeneral Institute of Neurodegenerative Disease (MIND), Massachusetts General Hospital, Charlestown, MA 02129, USA, ⁸Department of Statistics, University of California, Berkeley, CA 94720-3860, USA, ⁹Auckland City Hospital, Auckland, New Zealand, ¹⁰Columbia University, New York, NY 10032, USA and ¹¹Hereditary Disease Foundation, Santa Monica, CA 90405, USA

Received December 5, 2005; Revised and Accepted February 1, 2006

Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative diseases.

© The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

^{*}To whom correspondence should be addressed at: Laboratory of Functional Neurogenomics AI 2138, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, CH-1015 Lausanne, Switzerland. Tel: +41 216939533; Fax: +41 216939628; Email: ruth.luthi-carter@epfl.ch [†]Present address: MRC Centre for Neurodegeneration Research, Department of Psychological Medicine, Box PO 70, Institute of Psychiatry, King's College London. De Crespieny Park. London SE5 8AF, UK.

College London, De Crespigny Park, London SE5 8AF, UK. ^{*}The authors wish it to be known that, in their opinion, the last three authors should be regarded as joint Senior Authors.

INTRODUCTION

Huntington's disease (HD) is an autosomal dominant neurological disorder associated with dysfunction and degeneration of the basal ganglia. It has a mid-life onset and progresses inexorably over 15-20 years, with characteristic motor and cognitive symptoms, to death. A CAG expansion in the *HD* gene leads to the expression of an expanded polyglutamine tract in the encoded huntingtin protein (1). Mutant huntingtin is expressed ubiquitously but its pathology is regionally specific with the earliest and most severe changes noted in the striatum. Factors underlying this specificity remain unclear (2).

Neuropathological staging of human HD uses a five-point system on the basis of the macroscopic appearance of the brain and cell counts in the head of the caudate nucleus (2). In Grade 0 HD, the brain is macroscopically normal. Microscopic examination shows no astrocytosis and <40% loss of neurons, although neuronal loss in Grade 0 HD brains is generally closer to 30-40% than it is to 0%. In Grade 1 HD, moderate astrocytosis becomes apparent in the medial caudate and dorsal putamen, and neuronal loss has increased to 50%. By Grade 4, macroscopic atrophy is very severe, astrocytosis is prevalent in many areas and caudate neuronal loss is >90%.

The observed neuropathology of human HD represents the end result of a cascade of events to which some neurons are more susceptible and others more resistant. Although the most obvious and striking neuropathology of HD is the dramatic loss of medium spiny neurons in the caudate nucleus, thorough examination shows that other brain regions are affected in HD, and cortical cell loss is often reported. Other areas such as cerebellum typically show little or no detectable cell loss, although the whole brain appears atrophic (3). Objectively attaining genome-wide definitions of sensitive and resistant cell populations provides a more complete reference for understanding critical aspects of disease vulnerability.

Here we show that mRNA changes are extensive in Grades 0-2 HD brains. Overall, we observe that human RNA expression changes are most prevalent in brain regions susceptible to neurodegeneration. Consistent changes in expression also occur in individual cells and thus the observed decreases in expression in the caudate do not simply reflect cell loss. These data highlight aspects of HD not readily apparent from neuropathological studies. We find that functionally distinct areas of the cerebral cortex exhibit vastly different levels of altered gene expression, with motor regions showing greater effects than cognitive regions. Gene ontology (GO) analysis of the functions of differentially expressed genes suggests increased expression of genes related to central nervous system (CNS) development in both caudate and motor cortex. While identifying new aspects of HD and deepening our view of its known neuropathology, the human gene expression data provide a heretofore-missing reference for evaluating animal and in vitro models of HD in which specific mechanistic hypotheses can be explored.

RESULTS

Regional differences and similarities in gene expression within HD brains

Using microarrays, we examined mRNA levels in 44 human HD brains and 36 age- and sex-matched controls in a global

and unbiased analysis (Tables 1 and 2). Neuropathological staging of the HD cases ranged from Vonsattel Grades 0-4, with the majority assessed as Grades 0-2 (Table 1). Analyses included tissue dissected from caudate, the brain region with the earliest and most severe pathology in HD (2), cerebellum, which has very little pathology, and two cortical areas, BA4 (motor cortex) and BA9 (prefrontal association cortex). BA4 is involved in motor function, which is typically affected early in HD, whereas BA9 is involved in cognitive processing, which is often preserved in early stage disease. Samples were included in the study only if they passed RNA quality tests and corresponding case records showed no evidence of ischemia or other agonal events that could confound the analysis (Table 1, Materials and Methods) (4). A small number of additional samples were excluded on the basis of systematic quality assessment post-hybridization to Affymetrix HG-U133A and HG-U133B arrays (see Materials and Methods). Primary analyses compared the Vonsattel Grade 0-2 HD cases with controls, treating each brain region separately. A statistical criterion of P < 0.001 was used as the threshold for differential expression; at this threshold, one would expect $\sim 0.1\%$ or 45 of the 45 000 probe sets on the arrays to be called differentially expressed by chance.

Analysis using Bioconductor software (5) revealed that HD caudate had the largest number of mRNA changes. In caudate (N = 34 HD/32 controls), 21% (9763) of the probe sets demonstrated significant differential expression (Table 2) (Supplementary Material, Table S1). As grade increased, the magnitudes of caudate changes became larger, although this trend was only statistically significant for downregulated mRNAs (Fig. 1). Only ~1% (513) of probe sets showed mRNA changes in the cerebellum (N = 33 HD/28 controls, Table 2) (Supplementary Material, Table S1). The magnitudes of gene expression changes were also smaller in the cerebellum than in the caudate (Fig. 2 and Table 3) (Supplementary Material, Table S1).

We next examined gene expression in the cortical areas. In HD BA4 motor cortex (N = 16 HD/15 controls), 3% (1482) of the probe sets detected changes in mRNA expression (Table 2) (Supplementary Material, Table S2). In stark contrast to HD BA4, there were no changes in expression in HD BA9 beyond the number expected by chance (N = 10 HD/8 controls, Table 2) (Supplementary Material, Table S2). This held true even when samples from HD BA9 with Grades 3–4 pathology were considered (Supplementary Material, Table S2).

Overall, the regional changes in gene expression are consistent with the neuropathology in early grade HD, with caudate being the most affected area, the cerebellum and BA9 cortex being relatively spared and the BA4 cortex showing an intermediate pathology.

We next examined some of the specific genes affected by HD in the various regions to consider the cellular and molecular processes underlying the changes. mRNAs showing the largest fold change in differential expression between HD and controls are shown in Table 3; those differentially expressed in more than one brain region are highlighted. The expression of genes associated with gliosis and neuroinflammatory processes, such as glial fibrillary acidic protein, gap junction proteins and complement

Brain region	Cerebellum	Caudate	Frontal cortex					
C			BA4 ^a	BA9 ^a	combined			
Number of samples included in analysis ^{b,c}	67	70	36	30	66	203 ^b		
Controls	28	32	17	12	29	89		
Male	17	23	11	8	19	59		
Female	11	9	6	4	10	30		
Age (years)								
IQR	48.8-69.8	47.5-69.8	49.0-69.0	35.0-68.0	46.0-68.0			
Median	63.5	62.5	63	56	62			
Genotype ^d								
IQR	17-21.3	17 - 20.3	17-21	17.8 - 20.8	17-21			
Median	19	19	19	20	19			
HD	39	38	19	18	37	114		
Male	23	23	9	13	22	68		
Female	16	15	10	5	15	46		
Age (years)								
IQR	46.5-68.5	47.8-69.8	48.5 - 66.0	40.5-64.8	45.0-65.0			
Median	59	61.5	62	54	58			
Genotype ^d								
IQR	42-45	42-45	42-44.5	43-45.8	42-46			
Median	43	42.5	42	44.5	43			
Grade 0	3 ^e	3 ^e	1	2^{e}	3 ^e	9		
Grade 1	13 ^f	13 ^e	8	4 ^f	$12^{\rm f}$	38		
Grade 2	15	16	9	5	14	45		
Grades 3–4	8	6	1	7	8	22		

Table 1. Characteristics of the human brain samples analyzed by microarray

IQR, interquartile range (25th-75th percentile). Medians with decimal places represent an even number of samples where the final median value is the average of the two middle samples.

^aBA4 and BA9 samples were from different cases. Thirty-two BA4 and 20 BA9 cases were also able to be analyzed for cerebellum and caudate.

^bSamples where the A and/or B chip passed post-hybridization quality control (201 A chips and 203 B chips).

^cThere were 52 cases for which samples from cerebellum, caudate and frontal cortex were analyzed.

^dLargest allelic CAG repeat in the HD gene of each individual. HD samples are all in the pathological range (>35 repeats).

^eIncludes one presymptomatic case.

fIncludes two presymptomatic cases.

components, were found to be up-regulated, particularly in caudate. These apparent mRNA increases may reflect the differences in represented cell populations in the samples, as glial:neuronal ratios are known to be higher in degenerating brain regions (2).

In comparing mRNA changes between caudate and cortex, a feature of the human HD microarray phenotype not apparent from the known neuropathology was revealed. Of the 1482 dysregulated BA4 probe sets (P < 0.001), 806 were significantly dysregulated in the same direction in HD caudate, whereas only 13 changes were discordant (Table 3) (Supplementary Material, Tables S1 and S2). This underscores a previously unappreciated uniformity to effects in brain regions commonly thought to be differentially affected by HD.

Caudate expression changes are not simply the result of cell loss

Although it was hypothesized that the extent of gene expression changes in various brain regions would correlate with the overall pattern of disease pathology, this result also raised the question of whether mRNA/cell changes could be seen beyond those due to differences in cell ratios. To investigate whether the mRNA changes we observed in the caudate were independent of neuronal loss, we carried out laser-capture microdissection (LCM) analyses of a small number of brains

(four HD Grade 1, four controls). This technique ensured that the same number of neurons would be included in each sample (6). Although the statistical power of these analyses was limited, the HD versus control LCM samples show strong similarities to the brain homogenates, particularly among genes with decreased expression. Of probe sets detecting differential expression in HD caudate homogenates (P < 0.001), 65% of those showing increased expression and 77% of those showing decreased expression show the same direction of change in the LCM data (Fig. 3). We further assessed the relationship between the homogenate and LCM data by performing a Kolmogorov-Smirnov (KS) test and examining the correlation coefficient between moderated t-statistics of the differentially expressed caudate probe sets within the LCM data set (see Materials and Methods). In none of 10 000 data permutations did we observe a KS score as large as the one obtained in the data. In addition, the correlation coefficients of differentially expressed caudate probe sets are higher than those for similarly expressed ones: Kendall tau (Pearson's rho) for similarly expressed genes = 0.03 (0.06); for upregulated probe sets = 0.10 (0.16) and for downregulated probe sets 0.20 (0.28). These results are consistent with the hypothesis of association between the homogenate and LCM data sets for the genes differentially expressed between HD and control.

Sample group	Tissue	Grade	Number of samples		Number	Number of probe sets ^a					
			HD	Control	Total	Increased in HD	Decreased in HD				
All cases	Caudate Cerebellum	$_{0-2}^{0-2}$	34 33	32 28	9763 513	5331 131	4432 382	0.85 0.89			
Subsets of cases	BA4 cortex BA9 cortex BA9 cortex	$0-2 \\ 0-2 \\ 3-4$	16 10 5	15 8 12	1482 6 19	524 1 19	958 5 0	1.32 1.9 2.23			

 Table 2. Regional mRNA changes in human HD brain

^aHD cases versus control; P < 0.001 at which the predicted false discovery = 45 probe sets in the 'Total' column for each set of samples. Statistical analyses of gene expression measures were carried out with open source R software packages available as part of the BioConductor project (http://www.bioconductor.org).

^bThe power to detect changes increases with the number of replicates. The standard deviation at which a difference is detected within a group at P < 0.001 for the various different sample sizes is summarized in the column 'detectable SD'. The number of predicted false discoveries (45 per cohort) is independent of the number of replicates.

Figure 1. The magnitude of gene expression change increases with pathological grade. The log 2 fold change in Vonsattel Grade 0/1 HD cases (*x*-axis) is plotted against either the log 2 fold change in Grade 2 HD cases (*y*-axis, black dots) or the log 2 fold change in Grade 3/4 cases (*y*-axis, fuschia dots). The data displayed pertains to the 500 probe sets with the smallest *P*-values when Grades 0, 1 and 2 are considered together.

We then used the LCM data to identify the changes in differentially expressed caudate mRNAs, which occur on an mRNA/cell level. The top 50 mRNAs showing differential expression in both LCM and homogenate samples are shown in Table 4. mRNAs whose products have been shown previously to be decreased in HD were detected, including those encoding the adenosine A2A and cannabinoid CB1 receptors, substance P, protein kinase C beta and calbindin 1.

Signaling pathways and axonal structural elements show the greatest impact of gene expression changes

Analyses to identify transcriptional changes within known pathways were conducted to complement findings on individual genes. To identify objectively the biological pathways in which the dysregulated mRNAs function, the GO database was queried (http://www.geneontology.org) (7) using all the probe set IDs showing differential expression in HD caudate or BA4 cortex at P < 0.001 (see Materials and Methods) (Table 5). Consistent with previous observations in HD brain and

model systems, many of the pathways that show the highest proportion of mRNA changes in caudate relate to neuronal signaling and homeostasis (8). The majority of changes in these categories have lower expression in HD. The largest group of mRNAs showing changed expression in the caudate encodes neurotransmitter receptors. In this category, alterations extend to many molecular subtypes, including metabotropic and ionotropic receptor subunits, and those conveying signals from different transmitters, including excitatory amino acids, GABA, dopamine and cannabinoids. These results extend previous *in vivo* and *in vitro* observations in human HD brain (9).

Changes in gene expression in several categories related to ion transport are observed in both caudate and BA4 cortex (Table 5). Consistent with previous data from R6/2 mice (8,10,11), a considerable number of Ca²⁺-binding protein and Ca²⁺, K⁺ and Na⁺ channel mRNAs are downregulated. A novel finding in the present data set is that mRNAs encoding proton channel subunits also display large fold changes in their expression. Most of these changes are in mRNAs encoding vacuolar proton channel complex subunits, and these are likely to affect a number of important neuron-related processes including neurotransmitter release from synaptic vesicles (12) and autophagy (13,14). Other interesting and new observations are the over-representation of nodes related to CNS development and neurogenesis in both HD caudate and BA4. These genes are generally upregulated in HD (Table 5), supporting the recent observation of increased neurogenesis in HD brain (15).

Although HD caudate and HD BA4 show many overlapping gene expression changes, some interesting differences in represented biological processes were also observed. Notably, mRNAs encoding microtubule structure and transport components, including tubulin isoforms, were decreased in HD BA4 but not in HD caudate. These changes could represent a defect in the capacity of the cortical cells to maintain their axonal projections, thus impinging on corticostriatal signaling. Alternatively, such mRNA changes may reflect retrograde axonal dysfunction and degeneration in corticostriatal neurons initiated by striatal medium spiny neuron dysfunction; this explanation could also account for the observed asymmetry between the large number of mRNA changes in BA4 and the absence of changes in BA9.

Figure 2. Histograms showing distributions of fold change magnitudes in four brain regions. Grades 0-2 HD cases were compared with unaffected controls. For clarity, only information from the 5% of probe sets with smallest *P*-values is shown. Fold changes are expressed on the log 2 scale.

Accumulation of polyglutamine proteins and aberrant protein-protein interactions have been correlated with HD pathology, and preventing or reversing these processes is often proposed as a way to overcome the effects of HD. Indeed, chaperonins, heat shock proteins and other proteinfolding enzymes have been identified in suppressor/enhancer screens of polyglutamine toxicity (16-18). We find only limited evidence that these sorts of genes are induced as an auto-protective mechanism. In caudate and BA4 cortex, a number of mRNAs encoding peptidyl prolyl cis-trans isomerases, heat shock proteins, chaperonins, protein trafficking machinery and unfolded protein response proteins are dysregulated, but there is no consistent pattern to the changes. Moreover, there is little evidence for the normal expression of these genes being higher in areas of the brain relatively unaffected by HD (data not shown). These analyses do not address post-transcriptional regulation, which is known to be important for several of these pathways.

DISCUSSION

Molecular pathology of HD

The human HD profiles reported here are the culmination of work by many investigators to create a public record of HD-related gene expression (10,11,19-24). These data come from a large number of well-preserved samples and are

likely to be the definitive picture of gene expression in human HD brain for some time to come.

The major findings of this study involve new and richer descriptions of human HD. The accuracy of these descriptions is confirmed by their agreement with known features of HD, both in their wide sweep and in their detail. Broadly, we find that the transcriptional pathology of HD shows a distinct regional pattern that parallels the known pattern of neuro-degeneration: caudate > motor cortex > cerebellum. Also, our data reveal striking similarities in the effects provoked in caudate and motor cortex. This overlap suggests a shared molecular mechanism of HD-related dysfunction in both regions, despite the fact that the HD-sensitive (glutamatergic) corticostriatal pyramidal neurons have a different neuro-chemistry than the HD-sensitive (GABAergic) medium spiny neurons of the caudate.

The gene expression profiles also highlight new subtleties of the effects of HD within the cortex. Our data indicate that there are profound HD-related differences between prefrontal association cortex and motor cortex. To our knowledge, there are no published data on the comparative cellular pathology between BA4 and BA9 with which we may compare our findings. The present findings are consistent with recent neuroimaging data, however; using high resolution magnetic resonance imaging, shrinkage of areas in the cortical ribbon associated with motor function has been detected in early HD (25). This new appreciation of cortical dysfunction may Table 3. Top 30 mRNAs in each region showing differential expression in human Huntington's disease brain

Genes showing largest decreases in expression						Genes showing largest increases in expression						
Probe set	Symbol	Log 2 FC C	CN C	X CE	Gene	Probe set	Symbol	Log 2 FC	CN	СХ	CB	Gene
Caudate		_										
205626_s_at	CALB1	-2.0			Calbindin 1, 28 kDa	229151_at_B	SLC14A1	1.5				Solute carrier family 14 (urea transporter), member 1 (Kidd blood group)
221805_at	NEFL	-1.9			Neurofilament, light polypeptide 68 kDa	212063_at	CD44	1.5				CD44 antigen (homing function and Indian blood group system)
214655_at	GPR6	-1.9			G protein-coupled receptor 6	209047_at	AQP1	1.3				Aquaporin 1
207957_s_at	PRKCB1	-1.8			Protein kinase C, beta 1	207030_s_at	CSRP2	1.3				Cysteine and glycine-rich protein 2
206552_s_at	TAC1	-1.8			Tachykinin, precursor 1	227062_at_B	TncRNA	1.3				Trophoblast-derived noncoding RNA
206456_at	GABRA5	-1.8			Gamma-aminobutyric acid (GABA) A receptor, alpha 5	225571_at_B	LIFR	1.3				Leukemia-inhibitory factor receptor
213436_at	CNR1	-1.8			Cannabinoid receptor 1 (brain)	205741_s_at	DTNA	1.2				Dystrobrevin, alpha
207276_at	CDR1	-1.7			Cerebellar degeneration-related protein 1, 34 kDa	208451_s_at	C4B	1.2				Complement component 4B
205229_s_at	COCH	-1.7			Coagulation factor C homolog, cochlin (Limulus polyphemus)	209988_s_at	ASCL1	1.2				Achaete-scute complex-like 1 (Drosophila)
214553_s_at	ARPP-19	-1.7			Cyclic AMP phosphoprotein, 19 kDa	221731_x_at	CSPG2	1.2				Chondroitin sulfate proteoglycan 2 (versican)
220313_at	GPR88	-1.7			G-protein coupled receptor 88	36711_at	MAFF	1.1				v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)
205110 s at	FGF13	-1.7			Fibroblast growth factor 13	201792 at	AEBP1	1.1				AE-binding protein 1
210471 s at	KCNAB1	-1.6			Potassium voltage-gated channel, shaker-	231577 s at B	GBP1	1.1				Guanylate binding protein 1,
					related subfamily, beta member 1							interferon-inducible, 67 kDa
206355_at	GNAL	-1.6			Guanine nucleotide-binding protein, alpha-activating activity polypeptide	202376_at	SERPINA3	1.1				Serine (or cysteine) proteinase inhibitor, member 3
203549 s at	LPL	-1.6			Lipoprotein lipase	214428 x at	C4A	1.1				Complement component 4A
201939_at	SNK	-1.6			Serum-inducible kinase	228854_at_B	ZNF145	1.1				Zinc finger protein 145 (Kruppel-like, expressed in promyelocytic leukemia)
216307 at	DGKB	-1.6			Diacylglycerol kinase beta 90 kDa	235213 at B	ІТРКВ	11				Inositol 1 4 5-trisphosphate 3-kinase B
210016_at	MYT1L	-1.5			Myelin transcription factor 1-like	204070_at	RARRES3	1.1				Retinoic acid receptor responder (tazarotene-induced) 3
236359_at_B	SCN4B	-1.5			Sodium channel, voltage-gated, type IV, beta	227253_at_B	СР	1.1				Ceruloplasmin
202507 s at	SNAP25	-1.5			Synaptosomal-associated protein, 25 kDa	213592 at	AGTRL1	1.1				Angiotensin II receptor-like 1
233471 at B	PTPN5	-1.5			Protein tyrosine phosphatase, non-	227506 at B	SLC16A9	1.0				Solute carrier family 16 (monocarboxylic
					receptor type 5 (striatum-enriched)							acid transporters), member 9
214652_at	DRD1	-1.5			Dopamine receptor D1	204955_at	SRPX	1.0				Sushi-repeat-containing protein, X chromosome
224650 at B	MAL2	-1.4			Mal, T-cell differentiation protein 2	217767 at	C3	1.0				Complement component 3
213791 at	PENK	-1.4			Proenkephalin	201841 s at	HSPB1	1.0				Heat shock 27 kDa protein 1
221217 s at	A2BP1	-1.4			Ataxin 2-binding protein 1	207826 s at	ID3	1.0				Inhibitor of DNA-binding 3
205454 at	HPCA	-1.4			Hippocalcin	218901 at	PLSCR4	1.0				Phospholipid scramblase 4
204081_at	NRGN	-1.4			Neurogranin (protein kinase C substrate, RC3)	219167_at	RIS	1.0				Ras family member Ris
202429_s_at	PPP3CA	-1.4			Protein phosphatase 3 (formerly 2B), catalytic subunit, alpha isoform	227703_s_at_B	SYTL4	1.0				Synaptotagmin-like 4 (granuphilin-a)
223634_at_B	RASD2	-1.4			RASD family, member 2	202133_at	TAZ	1.0			,	Transcriptional co-activator with PDZ-binding motif (TAZ)
220359_s_at	ARPP-21	-1.4			Cyclic AMP-regulated phosphoprotein, 21 kDa	229259_at_B	GFAP	1.0				Glial fibrillary acidic protein

BA4 Cortex								
204338_s_at	RGS4	-1.3	Regulator of G-protein signalling 4	201667_at	GJA1	1.4		Gap junction protein, alpha 1, 43 kDa (connexin 43)
201971_s_at	ATP6V1A1	-1.1	ATPase, H ⁺ transporting, lysosomal 70 kDa V1 subunit A isoform 1	223673_at_B	RFX4	1.3		Regulatory factor X, 4
207276_at	CDR1	-1.1	Cerebellar degeneration-related protein 1, 34 kDa	221008_s_at	AGXT2L1	1.3		Alanine-glyoxylate aminotransferase
212216_at	KIAA0436	-0.9	Putative L-type neutral amino acid trans-	231771_at_B	GJB6	1.2		Gap junction protein, beta 6 (connexin
207594 s at	SVN11	-0.9	Synantojanin 1	217546 at	MT1K	12		Metallothionein 1 K
210787_s_at	CAMKK2	-0.9	Calcium/calmodulin-dependent protein kinase kinase 2, beta	229151_at_B	SLC14A1	1.2		Solute carrier family 14 (urea transporter), member 1 (Kidd blood group)
214589_at	FGF12	-0.9	Fibroblast growth factor 12	209395_at	CHI3L1	1.1		Chitinase 3-like 1 (cartilage glycoprotein-39)
223341 s at B	SCOC	-0.9	Short coiled-coil protein	202071 at	SDC4	1.1		Syndecan 4 (amphiglycan, ryudocan)
201647 s at	SCARB2	-0.9	Scavenger receptor class B member 2	218901_at	PLSCR4	1.0		Phospholipid scramblase 4
215236 s at	SEP6	-0.9	Septin 6	204422 s at	FGF2	1.0		Fibroblast growth factor 2 (basic)
274368 s at B	NDRG3	-0.8	NDRG family member 3	221950_at	FMX2	1.0		Empty spiracles homolog 2
224300 <u>s_at_</u> D	NORD	0.0		221)50_at		1.0		(Drosophila)
243556_at_B	NGEF	-0.8	Neuronal guanine nucleotide exchange factor	202800_at	SLCIA3	0.9		Solute carrier family I (glial high-affinity glutamate transporter), member 3
205018_s_at	MBNL2	-0.8	Muscleblind-like 2 (Drosophila)	204326_x_at	MT1L	0.9		Metallothionein 1L
232591_s_at_B	MAP2K4	-0.8	Mitogen-activated protein kinase kinase 4	202936_s_at	SOX9	0.9		SRY (sex determining region Y)-box 9
203265_s_at	VAMP1	-0.8	Vesicle-associated membrane protein 1 (synaptobrevin 1)	212850_s_at	LRP4	0.9		Low density lipoprotein receptor-related protein 4
207101_at	ATP2B2	-0.8	ATPase, Ca ⁺⁺ transporting, plasma membrane 2	208581_x_at	MT1X	0.9		Metallothionein 1X
211586_s_at	LAPTM4B	-0.8	Lysosomal associated protein trans-	204745_x_at	MT1G	0.9		Metallothionein 1G
208767 s at	VSNI 1	-0.8	Visinin-like 1	212859 x at	MT1F	0.9		Metallothionein 1F
203798_s_at	GABRG2	-0.8	Gamma-aminobutyric acid (GABA) A receptor, gamma 2	212185_x_at	MT2A	0.9		Metallothionein 2A
206849 at	SORT1	-0.8	Sortilin 1	213629 x at	RNAHP	0.9		RNA helicase-related protein
212797 at	SCD	-0.8	Stearoyl-CoA desaturase (delta-9-	228038 at B	SOX2	0.8		SRY (sex determining region Y)-box 2
211700	MADO	0.0	desaturase)	220000_ut_D		0.0		
211/08_s_at	MAP2	-0.8	Microtubule-associated protein 2	20904/_at	AQPI	0.8		Aquaporin I
210015_s_at	MO25	-0.8	MO25 protein	200461_x_at	MITH	0.8		Metallothionein TH
224311_s_at_B	RAB6A	-0.7	RAB6A, member RAS oncogene family	2090/4_s_at	TU3A	0.8		TU3A protein
201048_x_at	KCNAB2	-0.7	Potassium voltage-gated channel, shaker- related subfamily, beta member 2	214680_at	NTRK2	0.8	_	Neurotrophic tyrosine kinase, receptor, type 2
211791_s_at	PGRMC1	-0.7	Progesterone receptor membrane component 1	210906_x_at	AQP4	0.8		Aquaporin 4
201120_s_at	ATP6IP2	-0.7	ATPase, H ⁺ transporting, lysosomal-interacting protein 2	212377_s_at	NOTCH2	0.8		Notch homolog 2
201444_s_at	RAB5A	-0.7	RAB5A, member RAS oncogene family	205363_at	BBOX1	0.8		Butyrobetaine (gamma), 2-oxoglutarate dioxygenase 1
206113 s at	PGK1	-0.7	Phosphoglycerate kinase 1	203382 s at	APOE	0.8		Apolipoprotein E
200737_at	PSEN1	-0.7	Presenilin 1 (Alzheimer disease 3)	202620_s_at	PLOD2	0.8		Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase) 2
Cerebellum								
207768_at	EGR4	-1.1	Early growth response 4	212063_at	CD44	1.0		CD44 antigen (homing function and
204035_at	SCG2	-0.6	Secretogranin II (chromogranin C)	210068_s_at	AQP4	0.7		Aquaporin 4

Continued

Genes showing largest decreases in expression					Genes showing largest increases in expression						
Probe set	Symbol	Log 2 FC	CN CX	CB	Gene	Probe set	Symbol	Log 2 FC	CN (CX CB	Gene
207933_at	ZP2	-0.6			Zona pellucida glycoprotein 2 (sperm	223673_at_B	RFX4	0.6			Regulatory factor X, 4
228260_at_B	ELAVL2	-0.5			ELAV (embryonic lethal, abnormal vision, <i>Drosophila</i>)-like 2 (Hu antigen B)	227762_at_B	ZNF145	0.5			Zinc finger protein 145 (Kruppel-like, expressed in promyelocytic leukemia)
219825_at	P450RAI-2	-0.5			Cytochrome P450 retinoid metabolizing	207542_s_at	AQP1	0.5			Aquaporin 1
213436_at	CNR1	-0.5			Cannabinoid receptor 1 (brain)	205363_at	BBOX1	0.5			Butyrobetaine (gamma), 2-oxoglutarate dioxygenase 1
201505 at	LAMB1	-0.5			Laminin, beta 1	202976 s at	RHOBTB3	0.4			Rho-related BTB domain containing 3
228063 s at B	NAP1L5	-0.4			Nucleosome assembly protein 1-like 5	208451 s at	C4B	0.4			Complement component 4B
235342_at_B	SPOCK3	-0.4			Sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 3	204990_s_at	ITGB4	0.4			Integrin, beta 4
203349 s at	ETV5	-0.4			Ets variant gene 5 (ets-related molecule)	202940 at	PRKWNK1	0.4			Protein kinase, lysine deficient 1
209457_at	DUSP5	-0.4			Dual specificity phosphatase 5	201170_s_at	BHLHB2	0.4			Basic helix-loop-helix domain containing, class B, 2
223623_at_B	ECRG4	-0.4	_		Esophageal cancer related gene 4 protein	201060_x_at	STOM	0.3	_		Stomatin
227191_at_B	CDA08	-0.4			T-cell immunomodulatory protein	202620_s_at	PLOD2	0.3			Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase) 2
205489_at	CRYM	-0.4			Crystallin, mu	214680_at	NTRK2	0.3			Neurotrophic tyrosine kinase, receptor, type 2
203797_at	VSNL1	-0.4			Visinin-like 1	221677_s_at	DONSON	0.3			Downstream neighbor of SON
204260_at	CHGB	-0.4			Chromogranin B (secretogranin 1)	201430_s_at	DPYSL3	0.3			Dihydropyrimidinase-like 3
204230_s_at	SLC17A7	-0.4			Solute carrier family 17 (sodium- dependent inorganic phosphate cotran- sporter)	238880_at_B	GTF3A	0.3			General transcription factor IIIA
223538_at_B	SERF1A	-0.3	_		Small EDRK-rich factor 1A (telomeric)	223679_at_B	CTNNB1	0.3			Catenin (cadherin-associated protein), beta 1, 88 kDa
203110_at	PTK2B	-0.3			PTK2B protein tyrosine kinase 2 beta	204060_s_at	PRKX	0.3			Protein kinase, X-linked
212716_s_at	M9	-0.3			Muscle specific gene	204760_s_at	NR1D1	0.3			Nuclear receptor subfamily 1, group D, member 1
223136_at_B	AIG1	-0.3	_		Androgen-induced 1	204041_at	MAOB	0.3			Monoamine oxidase B
204513_s_at	ELMO1	-0.3			Engulfment and cell motility 1 (ced-12 homolog)	225845_at_B	HSPC063	0.3			HSPC063 protein
209648_x_at	SOCS5	-0.3	_		Suppressor of cytokine signaling 5	209293_x_at	ID4	0.3			Inhibitor of DNA-binding 4
210381_s_at	CCKBR	-0.3			Cholecystokinin B receptor	209049_s_at	PRKCBP1	0.3			Protein kinase C binding protein 1
218197_s_at	OXR1	-0.3			Oxidation resistance 1	209102_s_at	HBP1	0.3			HMG-box containing protein 1
202124_s_at	ALS2CR3	-0.3			Amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 3	212689_s_at	TSGA	0.3			Zinc finger protein
222444_at_B	ARMCX3	-0.3			Armadillo repeat containing, X-linked 3	207553_at	OPRK1	0.3			Opioid receptor, kappa 1
201577_at	NME1	-0.3			Non-metastatic cells 1, protein (NM23A)	244403_at_B	CRB1	0.3			Crumbs homolog 1 (Drosophila)
209726_at	CA11	-0.3			Carbonic anhydrase XI	201399_s_at	TRAM	0.3			Translocating chain-associating membrane protein
204540_at	EEF1A2	-0.3			Eukaryotic translation elongation factor 1 alpha 2	208534_s_at	CAPRI	0.2			Ca ²⁺ -promoted Ras inactivator

Grades 0-2 HD cases were compared to unaffected controls on Affymetrix HG-U133A and HG-U133B arrays. A statistical cutoff of P < 0.001 was used as criteria for differential expression. Differentially expressed probesets were ranked based on their fold change, HD/control. The 30 genes with the largest magnitude decreases in HD (left panels) and increases in HD (right panels) are shown for the caudate, cerebral cortex (Brodmann's area 4) and cerebellum. Probesets for ESTs and genes without annotation have been omitted from this table. In cases where multiple probesets represent the same mRNA, the probeset with the largest magnitude of change is shown. Several genes appear in the top 30 lists in more than one brain region; they are indicated by a colored cell in the Gene Symbol column. Color in the columns CN, CX and CB is used to indicate if a probeset met the P < 0.001 criteria and its direction of change in caudate (CN), BA4 cortex (CX) or cerebellum (CB). Blue is used to represent reduced expression in HD, light red is used to indicate increased expression in HD.

Figure 3. Behavior of probe sets in LCM with respect to prediction by caudate homogenate data (HD versus control caudate). Probe sets meeting P < 0.001 in the homogenate data set are represented by red points if increased (left panel) and green points if decreased (right panel). (Probe sets not meeting P < 0.001 are represented by open circles.)

eventually offer insights into the spectrum of motor and psychiatric presentations found in HD patients.

When considered in detail, our data is also consistent with mRNA changes in HD brains reported from *in situ* hybridization studies (26-29). Extrapolations from the gene expression data to protein levels are also consistent with reported changes in G-protein-coupled receptor densities (30-32) and immunohistochemical changes, such as the downregulation of calbindin (33).

Cell loss and cellular dysfunction

One limitation of studies using tissue samples from HD brains is that changes in susceptible cells are inextricably mixed with those reflecting previous neurodegeneration. Thus, some of the apparent differental gene expression may be inflated by (or even attributed to) shifts in cell populations, specifically the loss of neurons and gain of astrocytes and microglia. The LCM data, however, indicate that at least some of the detected changes are due to medium spiny neuron dysfunction on an mRNA/cell level. Also, the confounding effect of previous neuronal loss is likely to be much smaller in the BA4 motor cortex: preliminary studies suggest cell loss of only 4-20% in Grades 0-2 BA4 (D. Thu and R.L.M. Faull, unpublished data). Moreover, cell loss is probably negligible in the cerebellum. Thus, the changes we report here are not merely a trivial representation of brain tissue from which neurons are missing.

Occasionally, the brains of individuals manifesting symptoms of HD show no detectable neurodegeneration (34,35). In addition, mouse models of HD can exhibit severe behavioral changes without detectable neuronal loss (36,37). These findings suggest that HD-affected neurons are dysfunctional for a time before they eventually die and that this dysfunctional state contributes to disease. Further evidence for the existence of cellular dysfunction upstream of cell death comes from our analyses of laser-captured neurons that confirm a subset of molecular changes at an mRNA/cell level.

The high proportion of genes showing HD-related differential expression, involving up to 21% of all genes in the caudate, suggests that caution be exercised in projecting the functional impact of any single molecular change. Hypotheses underpinned by changes in the expression of groups of genes, such as those seen in more than one area of the brain or common functional pathways, may prove to be more robust.

Conclusions and implications for future studies

In summary, the data presented here provide an objective and comprehensive molecular description of low-grade HD neuropathology for the first time. These findings demonstrate that differential gene expression in HD brain shows a distinct regional pattern that generally parallels, but is not limited to, the known pattern of neuronal loss. The gene expression profiles of HD caudate and HD motor cortex are strikingly similar, suggesting that there may be similar general molecular characteristics to the neurodegenerative process in different regions of the brain.

These data also reveal novel HD-related molecular differences between motor cortex and a cortical area implicated in cognition. Further examination of the properties of neurons resistant to mutant HD-induced transcriptional changes may reveal criticial pathogenic or protective pathways.

Ongoing studies of HD mechanisms should consider the molecular information provided from this large collection of well-preserved HD brains. One immediate application of these findings is in the assessment of disease hypotheses related to transcription (6,9,11,38). To find a platform for studying the etiology of gene expression changes, however, one must first identify HD models that faithfully reproduce those seen in human HD brain (39).

MATERIALS AND METHODS

Human microarray samples

Affymetrix GeneChip microarray analyses of caudate nucleus, frontal cortex and cerebellum samples were conducted with RNA extracted from fresh-frozen samples collected with minimal postmortem interval to autopsy from 44 HD-gene-positive cases and 36 age- and sex-matched controls (Table 1; NCBI Gene Expression Omnibus entry GSE3790; EBI Array Express entry E-AFMX-6). All samples were carefully selected on the basis of RNA quality and antemortem variables, and the HD cases were additionally analyzed on the basis of the presence or absence of disease symptoms and Vonsattel grade of disease pathology (scale = 0-4) (2). Tissues were collected from precise anatomical regions and stored at -80° C. Where available for each case, frozen blocks of the head of the caudate nucleus, frontal cortex [motor cortex (BA4) or prefrontal association cortex (BA9)] and cerebellum (non-vermal cerebellar hemisphere) were further dissected to provide 10-200 mg tissue samples for RNA extraction. Pathological grading of HD cases was performed from corresponding formalin-fixed, paraffin-embedded caudate nucleus sections according to the Vonsattel scale (2), by two neuropathologists with special interest and expertise in HD pathology. This grading scale is based on the overall pattern of neuropathology of the caudate nucleus and on the numbers and ratio of neurons and astrocytes. A subset of cases were cross-referenced across collection sites to confirm consistency of the grading procedure. DNA was extracted from all cases and controls and genotyped for the CAG

|--|

Probe set ID	Log 2 FC	Name	Gene symbol	Probe set ID	Log 2 FC	Name	Gene symbol
203548_s_at	-2.90 -2.84	Lipoprotein lipase Protein phosphatase 3 (formerly 2B)	LPL PPP3CA	202196_s_at	-1.78	Dickkopf homolog 3	DKK3
202429_3_at	2.04	catalytic subunit, alpha isoform (calcineurin A alpha)	IIIJEA	204675_at	-1.78	Steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5	SRD5A1
213436 at	-2.48	Cannabinoid receptor 1 (brain)	CNR1			alpha-steroid delta	
207957 s at	-2.45	Protein kinase C, beta 1	PRKCB1			4-dehydrogenase alpha 1)	
221482_s_at	-2.29	Cyclic AMP phosphoprotein, 19 kDa	ARPP-19	221434_s_at	-1.78	Hypothetical protein DC50	DC50
218200_s_at	-2.20	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8 kDa	NDUFB2	203817_at 200640_at	-1.78 - 1.76	Guanylate cyclase 1, soluble, beta 3 Tyrosine 3-monooxygenase/trypto-	GUCY1B3 YWHAZ
226390_at	-2.19	START domain containing 4, sterol regulated	STARD4	_		phan 5-monooxygenase activation protein, zeta polypeptide	
224587_at	-2.12	Activated RNA polymerase II transcription cofactor 4	PC4	205352_at	-1.76	Serine (or cysteine) proteinase inhibitor, clade I (neuroserpin),	SERPINI1
204796_at	-2.09	Echinoderm microtubule associated	EMLI	217722 a at	1 75	member 1 Maganahymal stam call matain DSC02	NEUCOIN
214655 at	-2.05	C protein coupled recenter 6	CDD6	217722_s_at	-1.75	Rho associated acided acid	NEUGKIN
208870_x_at	-2.05 -2.05	ATP synthase, H+ transporting,	ATP5C1	202702_at	-1.75	containing protein kinase 2	KOCK2
	0.05	mitochondrial F1 complex, gamma polypeptide 1	DODUS	205122_at	-1.74	Transmembrane protein with EGF-like and two follistatin-like	TMEFF1
228640_at	-2.05	BH-protocadherin (brain-heart)	PCDH7		. = 2	domains l	
205110_s_at	-2.04	Fibroblast growth factor 13	FGF13	226884_at	-1.72	Leucine-rich repeat neuronal I	LRRNI
200/38_s_at	-2.01	Phosphoglycerate kinase I	PGKI	200662_s_at	-1.72	Translocase of outer mitochondrial	TOMM20
205280_at	-2.01	Glycine receptor, beta	GLKB	222870+	1.70	membrane 20 (yeast) homolog	D2CNT1
221805_at	- 1.99	68 kDa	NEFL	222870_s_at	-1.72	beta-1,3-N-acetylglucosaminyl-	BSGN11
231341_at	-1.98	Solute carrier family 35, member D3	SLC35D3			transferase 1	
230130_at	-1.98	Slit homolog 2 (Drosophila)	SLIT2	210078_s_at	-1.71	Potassium voltage-gated channel,	KCNAB1
226185_at	-1.91	CDP-diacylglycerol synthase (phos- phatidate cytidylyltransferase) 1	CDS1			shaker-related subfamily, beta member 1	
208857_s_at	-1.90	Protein-L-isoaspartate (D-aspartate)	PCMT1	221207_s_at	-1.71	Neurobeachin	NBEA
		o-methyltransferase		206552_s_at	-1.70	Tachykinin, precursor 1 (substance	TAC1
222572_at	-1.90	Protein phosphatase 2C, magnesium- dependent catalytic subunit	PPM2C	233437 at	-1.70	K, substance P, neurokinin) Gamma-aminobutyric acid (GABA)	GABRA4
200650 s at	-1.89	Lactate dehydrogenase A	LDHA	200 10 / _at	11/0	A receptor, alpha 4	onbidii
201889 at	-1.88	Family with sequence similarity 3	FAM3C	201362 at	-1.69	NS1-binding protein	NS1-BP
201009_ut	1100	member C	1111100	220313 at	-1.68	G-protein coupled receptor 88	GPR88
205625 s at	-1.88	Calbindin 1 28 kDa	CALB1	219619 at	-1.68	DIRAS family, GTP-binding	DIRAS2
205348_s_at	-1.85	Dynein, cytoplasmic, intermediate	DNCI1			RAS-like 2	
		polypeptide 1		203404_at	-1.64	Armadillo repeat protein ALEX2	ALEX2
200093_s_at	-1.81	Histidine triad nucleotide-binding protein 1	HINT1	240532_at	-1.63	Vesicular inhibitory amino acid transporter	VIAAT
202930_s_at	-1.79	Succinate-CoA ligase, ADP-forming,	SUCLA2	206858_s_at	1.63	Homeobox C6	HOXC6
_		beta subunit		229019_at	-1.63	Zinc finger protein 533	ZNF533

RNAs showing differential expression in the same direction (increased or decreased) in both LCM-dissected neurons and caudate homogenates from HD cases versus controls (P < 0.05 for LCM and P < 0.001 for caudate homogenates. Shown are the top 50 mRNA changes ranked by M in the LCM data for (non-redundant annotated probesets only, as for Table 2).

repeat length alleles in *IT15* (*HD* gene), as described previously (40). Postmortem interval to autopsy was available for the majority of samples and detailed clinical information for many. RNA integrity was assessed by capillary electrophoresis on a bioanalyzer 2100 (Agilent) using 300 ng of total RNA. RNA samples without sharp ribosomal RNA peaks were generally excluded from further processing steps.

Microarray sample processing

RNA was extracted using TRIzol (Invitrogen) or Tri-Reagent (Sigma) followed by RNeasy column cleanup (Qiagen) using the manufacturers' protocols. Ten micrograms of total RNA from each sample were used to prepare biotinylated fragmented

cRNA according to the GeneChip[®] Expression Analysis Protocol (Rev. 2, March 2003), with products from Affymetrix. Microarrays (Human Genome U133A and U133B) were hybridized for 16 h in a 45°C incubator with constant rotation at 60 r.p.m. Chips were washed and stained on the Fluidics Station 400 and scanned using the GeneArray[®] 2500, according to the GeneChip Expression Analysis Protocol (Affymetrix).

Microarray quality control

Two procedures were used to assess array quality and remove outlier chips; arrays defined as outliers by either procedure were excluded from further analyses. We used the PM/MM difference outlier algorithm of Li and Wong (41),

Brain region	Node	Number in node	Caudate			Cortex		
			Changed	%	P-value	Changed	%	P-value
GO biological process								
Synaptic transmission	7268	360	143	39.7	0	29	8.1	1.86E-07
Neurogenesis	7399	526	180	34.2	2.50E-12	34	6.5	2.08E-05
ATP synthesis coupled proton transport	15 986	58	34	59	5.98E-12	8	13.8	6.03E-04
Protein amino acid phosphorylation	6468	1120	336	30	1.17E - 11			
CNS development	7417	117	53	45.3	3.99E-10	13	11.1	1.05E - 06
Ca ²⁺ ion transport	6816	139	57	41	2.21E - 08	13	9.4	3.05E-05
Proton transport	15 992	104	45	43.3	6.06E-08	11	10.6	1.55E-05
Protein kinase C activation	7205	38	21	55.2	3.08E-07			
Intracellular signalling cascade	7242	675	199	29.6	6.71E-07			
Inactivation of MAPK	188	29	17	58.6	8.21E-07			
K ⁺ ion transport	6813	255	87	34.1	1.00E - 06	23	9	1.39E-07
Neurotransmitter secretion	7269	17	12	70.6	2.38E-05			
Vesicle-mediated transport	16 192	69	29	42	2.46E - 05			
Ion transport	6811	341	105	30.8	3.03E-05	29	8.5	3.11E-08
Muscle contraction	6936	153	53	34.6	6.29E-05			
Regulation of G-protein coupled receptors	8277	54	23	42.6	1.12E - 04			
Neuronal differentiation	30 182	10	8	80	1.52E - 04			
Signal transduction	7165	1822	460	25.2	1.71E - 04			
Regulation of cell differentiation	45 595	23	12	52.2	2.16E - 04			
Cytokinesis	910	42	18	42.9	4.91E - 04			
Transcription from Pol III promoter	6383	33	15	45.5	5.15E - 04			
Small GTPase-mediated signal tranduction	7264	407	116	28.5	5.55E - 04			
Protein localisation	8104	25	12	48	7.76E - 04			
Peptidyl-prolyl cis-trans isomerase activity	3755	83	30	36.1	8.05E - 04			
Microtubule polymerization	46 785	40				13	32.5	0
Transport	6810	934				69	7.4	6.96E-13
Microtubule-based movement	7018	82				14	17.1	1.30E-12
Metabolism	8152	570				40	7	2.67E - 07
Glycolysis	6096	85				11	12.9	3.04E - 07
Protein transport	15 031	391				27	6.9	2.92E - 05
Intracellular protein transport	6886	314				23	7.3	2.95E-05
Lipid metabolism	6629	230				17	7.4	2.41E-04
Glucose metabolism	6006	28				6	21.4	2.55E-04
Vesicle docking during endocytosis	6904	21				5	23.8	5.04E-04

Table 5. Biological processes with the highest proportions of dysregulated probe sets in HD caudate and BA4 cortex

The GO database was queried as described in Methods. Only categories where P < 0.001 are shown: in caudate total biological process nodes with P < 0.05 was 44 in caudate and 26 in cortex.

implemented in dChip software (http://www.biostat.Harvard. edu/complab/dchip). In addition, we used a quality assessment algorithm based on weights from robust regression models fits of gene expression with both chip and probe effects (42). For these robust regression models, outlier probes receive lower weight in the model fitting. Chips with aberrant patterns of low weights were excluded from further analyses.

Laser-capture microdissection

Methylene blue-stained neuronal profiles were microdissected from 7 μ m sections of human brain tissue using an AutoPix instrument (Arcturus) as previously described (6). RNA from 5000 neuronal profiles per brain were extracted with the PicoPure isolation kit (Arcturus) and prepared for hybridization to HG-U133 Plus 2.0 arrays using a Two-Cycle Target Amplification kit (Affymetrix). Four HD Grade 1 and four (4) age- and gender-matched controls were included in the present analysis. Microarray analyses were conducted as described below (for homogenate RNA samples), except that no correction was made for age, gender or collection site. (However, sample groups were matched for these criteria.)

We tested the similarity of mRNA changes found after LCM and mRNA changes previously detected in caudate. Considering the 44 692 HG-U133 Plus 2.0 probe sets present on HG-U133 A and HG-U133 B chips, we ordered them according to their absolute expression change in LCM data and used the KS statistic to quantify similarity with expression changes detected in caudate (P < 0.001, ordered by increasing P-value). The KS statistic takes large values when the relative ordering of probe sets is similar in both lists (43). We also examined the correlation between the two sets (both Kendall tau and Pearson's rho). Assigning an appropriate *P*-value in this case is difficult, as formal hypothesis tests assume independence of the probe sets within each list. We did, however, explore the permutation distribution of the KS statistic. Here, we randomly permuted the order of probe sets in the LCM list of expression changes and computed the resulting KS statistic 10 000 times. None of the permutations resulted in a larger KS statistic than the one observed with the original data.

Statistical analyses of differential gene expression

Statistical analyses of gene expression measures for included chips were carried out with open source R software packages available as part of the BioConductor project (http://www.bioconductor.org). Gene expression was quantified by robust multi-array analysis (44,45) using the affy package (46).

To identify genes differentially expressed between HD (Grades 0-2) and controls for each brain region, we computed empirical Bayes moderated *t*-statistics with the limma package (47), correcting gene expression for collection site (Boston or New Zealand), gender and age [<45, (45–60), (60–70) and 70+ years]. Unless otherwise stated, reported *P*-values are nominal, unadjusted. R code for these analyses is available on request.

GO analysis

GO categories were tested for over-representation in the list of the 9763 most significant probe sets (P < 0.001) in HD caudate and the 1482 most significant probe sets (P < 0.001) in HD BA4 cortex compared with control. P-values for over-representation were calculated by Fisher's exact test if either the number of probes in a category on the list or the number of probe sets not on the list were less than 10, with Pearson's chi-squared test used otherwise. The most significantly over-represented categories are shown in Table 5. We also tested whether more categories attained a given P-value for over-representation than would be expected by chance. This was done by randomly selecting 9763 of the 44 860 probe sets to be on the list and repeating the analysis for each category for the caudate and 1482 of the 44 860 for cortex. The whole process was repeated 3691 times for caudate and 9000 times for cortex, and in none of the replicate lists were as many categories over-represented as in the actual data. This suggests that the results shown in Table 5 are due to genuine differential expression of certain gene categories, rather than stochastic variation.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online.

ACKNOWLEDGEMENTS

We would like to thank all the HD families who have contributed to this research, the New Zealand Neurological Foundation Brain Bank, the Hereditary Disease Foundation's Rare Tissue and Venezuela Project Tissue Collections, Marie-Francoise Chesselet, the Harvard Brain Tissue Resource Center and the UCLA Human Brain and Spinal Fluid Resource Center. We are grateful to Kathy Newell, Matthew Frosch and Jean Paul Vonsattel for sharing their insights regarding HD neuropathology. We thank the Wales Gene Park and Cardiff University Central Biotechnology Services, Christine Keller-McGandy, Ismail Azzabi and Claude Alves for technical assistance with array samples and the DNA diagnostic Laboratory of Massachusetts General Hospital, Marcy MacDonald and Jayalakshmi Mysore for HD genotyping. Thanks also to Juan Botas, Marcy MacDonald, Todd Golub, Carl Johnson, Peter Detloff, Roger Albin and Robert Ferrante for critical review of the manuscript. Funding was provided by

the Hereditary Disease Foundation's Cure HD Initiative, High Q Foundation, USA National Institutes of Health (CA74841 to C.K., A.K.A.), Ecole Polytechnique Fédérale de Lausanne (R.L.-C.), Medical Research Council UK (L.J., L.A.E.), Biotechnology and Biological Sciences Research Council UK (L.J., A.H., G.H.), Wales Office for Research and Development (C.H.), Health Research Council of New Zealand, New Zealand Neurological Foundation and University of Auckland (R.L.M.F., D.T.), National Center of Competence in Research on Molecular Oncology, a research program of the Swiss National Science Foundation (T.S., M.D.) and the Novartis Foundation (A.K.).

Conflicts of Interest statement. None declared.

REFERENCES

- The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. *Cell*, **72**, 971–983.
- Vonsattel, J.P., Myers, R.H., Stevens, T.J., Ferrante, R.J., Bird, E.D. and Richardson, E.P., Jr (1985) Neuropathological classification of Huntington's disease. *J. Neuropathol. Exp. Neurol.*, 44, 559–577.
- Gutekunst, C.A., Norflus, F. and Hersch, S.M. (2002) The neuropathology of Huntington's disease. In Bates, G.P., Harper, P.S. and Jones, A.L. (eds), *Huntington's Disease*, 4th edn. OUP, Oxford, UK, pp. 251–275.
- Tomita, H., Vawter, M.P., Walsh, D.M., Evans, S.J., Choudary, P.V., Li, J., Overman, K.M., Atz, M.E., Myers, R.M. and Jones, E.G. (2004) Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. *Biol. Psychiatry*, 55, 346–352.
- Gentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J. *et al.* (2004) Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol.*, 5, R80.
- Zucker, B., Luthi-Carter, R., Kama, J.A., Dunah, A.W., Stern, E.A., Fox, J.H., Standaert, D.G., Young, A.B. and Augood, S.J. (2005) Transcriptional dysregulation in striatal projection and interneurons in a mouse model of Huntington's disease: neuronal selectivity and potential neuroprotective role of HAP1. *Hum. Mol. Genet.*, 14, 179–189.
- The Gene Ontology Consortium. (2001) Creating the gene ontology resource: design and implementation. *Genome Res.*, 11, 1425–1433.
- Luthi-Carter, R., Strand, A., Peters, N.L., Solano, S.M., Hollingsworth, Z.R., Menon, A.S., Frey, A.S., Spektor, B.S., Penney, E.B., Schilling, G. *et al.* (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington's disease. *Hum. Mol. Genet.*, 9, 1259–1271.
- 9. Bates, G., Harper, P.S. and Jones, L. (2002) *Huntington's Disease*, 3rd edn. OUP, Oxford, UK.
- Luthi-Carter, R., Strand, A.D., Hanson, S.A., Kooperberg, C., Schilling, G., La Spada, A.R., Merry, D.E., Young, A.B., Ross, C.A., Borchelt, D.R. *et al.* (2002) Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. *Hum. Mol. Genet.*, 11, 1927–1937.
- Luthi-Carter, R., Hanson, S.A., Strand, A.D., Bergstrom, D.A., Chun, W., Peters, N.L., Woods, A.M., Chan, E.Y., Kooperberg, C., Krainc, D. *et al.* (2002) Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. *Hum. Mol. Genet.*, 11, 1911–1926.
- Edwardson, J.M., Wang, C.-T., Gong, B., Wyttenbach, A., Bai, J., Jackson, M.B., Chapman, E.R. and Morton, A.J. (2003) Expression of mutant huntingtin blocks exocytosis in PC12 cells by depletion of complexin II. *J. Biol. Chem.*, **278**, 30849–30853.
- Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O'Kane, C.J. *et al.* (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. *Nat. Genet.*, 36, 585–595.

- Kegel, K.B., Kim, M., Sapp, E., McIntyre, C., Castano, J.G., Aronin, N. and DiFiglia, M. (2000) Huntingtin expression stimulates endosomal– lysosomal activity, endosome tubulation, and autophagy. *J. Neurosci.*, 20, 7268–7278.
- Curtis, M.A., Penney, E.B., Pearson, J., Dragunow, M., Connor, B. and Faull, R.L.M. (2005) The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington's disease human brain. *Neuroscience*, **132**, 777–788.
- Wyttenbach, A., Carmichael, J., Swartz, J., Furlong, R.A., Narain, Y., Rankin, J. and Rubinsztein, D.C. (2000) Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. *Proc. Natl Acad. Sci. USA*, 97, 2898–2903.
- Jana, N.R., Tanaka, M., Wang, G. and Nukina, N. (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. *Hum. Mol. Genet.*, 9, 2009–2018.
- Warrick, J.M., Chan, H.Y., Gray-Board, G.L., Chai, Y., Paulson, H.L. and Bonini, N.M. (1999) Suppression of polyglutamine-mediated neurodegeneration in *Drosophila* by the molecular chaperone HSP70. *Nat. Genet.*, 23, 425–428.
- Kiehl, T.R., Olson, J.M. and Pulst, S.M. (2001) The Hereditary Disease Array Group (HDAG)—microarrays, models and mechanisms: a collaboration update. *Curr. Genomics*, 2, 221–229.
- Chan, E.Y.W., Luthi-Carter, R., Strand, A., Solano, S.M., Hanson, S.A., DeJohn, M.M., Kooperberg, C., Chase, K.O., DiFiglia, M., Young, A.B. *et al.* (2002) Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease. *Hum. Mol. Genet.*, **11**, 1939–1951.
- Sipione, S., Rigamonti, D., Valenza, M., Zuccato, C., Conti, L., Pritchard, J., Kooperberg, C., Olson, J.M. and Cattaneo, E. (2002) Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. *Hum. Mol. Genet.*, 11, 1953–1965.
- Orr, H.T. (2002) Microarrays and polyglutamine disorders: reports from the Hereditary Disease Array Group. *Hum. Mol. Genet.*, 11, 1909–1910.
- Lieberman, A.P., Harmison, G., Strand, A.D., Olson, J.M. and Fischbeck, K.H. (2002) Altered transcriptional regulation in cells expressing the expanded polyglutamine androgen receptor. *Hum. Mol. Genet.*, 11, 1967–1976.
- Xu, X.L., Olson, J.M. and Zhao, L.P. (2002) A regression-based method to identify differentially expressed genes in microarray time course studies and its application in an inducible Huntington's disease transgenic model. *Hum. Mol. Genet.*, 11, 1977–1985.
- Rosas, H.D., Koroshetz, W.J., Chen, Y.I., Skeuse, C., Vangel, M., Cudkowicz, M.E., Caplan, K., Marek, K., Seidman, L.J., Makris, N. *et al.* (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. *Neurology*, **60**, 1615–1620.
- Richfield, E.K., Maguire-Zeiss, K.A., Cox, C., Gilmore, J. and Voorn, P. (1995) Reduced expression of preproenkephalin in striatal neurons from Huntington's disease patients. *Ann. Neurol.*, **37**, 335–343.
- Augood, S.J., Faull, R.L.M., Love, D.R. and Emson, P.C. (1996) Reduction in enkephalin and substance P messenger RNA in the striatum of early grade Huntington's disease: a detailed cellular in situ hybridization study. *Neuroscience*, **72**, 1023–1036.
- Augood, S.J., Faull, R.L.M. and Emson, P.C. (1997) Dopamine D1 and D2 receptor gene expression in the striatum in Huntington's disease. *Ann. Neurol.*, 42, 215–221.
- Arzberger, T., Krampfl, K., Leimgruber, S. and Weindl, A. (1997) Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington's disease—an in situ hybridization study. *J. Neuropathol. Exp. Neurol.*, 56, 440–454.

- Glass, M., Dragunow, M. and Faull, R.L.M. (2000) The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. *Neuroscience*, 97, 505–519.
- Reisine, T.D., Fields, J.Z., Stern, L.Z., Johnson, P.C., Bird, E.D. and Yamamura, H.I. (1977) Alterations in dopaminergic receptors in Huntington's disease. *Life Sci.*, 21, 1123–1128.
- Richfield, E.K., O'Brien, C.F., Eskin, T. and Shoulson, I. (1991) Heterogeneous dopamine receptor changes in early and late Huntington's disease. *Neurosci. Lett.*, 132, 121–126.
- Seto-Ohshima, A., Emson, P.C., Lawson, E., Mountjoy, C.Q. and Carrasco, L.H. (1988) Loss of matrix calcium-binding protein-containing neurons in Huntington's disease. *Lancet*, 1, 1252–1255.
- 34. Mizuno, H., Shibayama, H., Tanaka, F., Doyu, M., Sobue, G., Iwata, H., Kobayashi, H., Yamada, K., Iwai, K., Takeuchi, T. *et al.* (2000) An autopsy case with clinically and molecular genetically diagnosed Huntington's disease with only minimal non-specific neuropathological findings. *Clin. Neuropathol.*, **19**, 94–103.
- Caramins, M., Halliday, G., McCusker, E. and Trent, R.J. (2003) Genetically confirmed clinical Huntington's disease with no observable cell loss. *J. Neurol. Neurosurg. Psychiatry*, **74**, 968–970.
- Turmaine, M., Raza, A., Mahal, A., Mangiarini, L., Bates, G.P. and Davies, S.W. (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. *Proc. Natl Acad. Sci. USA*, 97, 8093–8097.
- 37. Stack, E.C., Kubilus, J.K., Smith, K., Cormier, K., Del Signore, S.J., Guelin, E., Ryu, H., Hersch, S. and Ferrante, R.J. (2005) Chronology of behavioral symptoms and neuropathologic sequela in R6/2 Huntington's disease transgenic mice. *J. Comp. Neurol.*, **490**, 354–370.
- Zhai, Z., Jeong, H., Cui, L., Krainc, D. and Tjian, R. (2005) In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. *Cell*, **123**, 1241–1253.
- Tobin, A.J. and Signer, E.R. (2000) Huntington's disease: the challenge for cell biologists. *Trends Cell Biol.*, 10, 531–536.
- Warner, J.P., Barron, L.H. and Brock, D.J. (1993) A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes. *Mol. Cell. Probes*, 7, 235–239.
- Li, C., and Wong, W.H. (2001) Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. *Proc. Natl Acad. Sci. USA*, 98, 31–36.
- 42. Collin, F. (2004) Analysis of oligonucleotide data with a view to quality assessment. Department of Statistics. University of California, Berkeley.
- Mootha, V.K., Lindgren, C.M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E. *et al.* (2003) PGC-1[alpha]-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. *Nat. Genet.*, 34, 267–273.
- 44. Bolstad, B.M., Irizarry R.A., Astrand, M. and Speed, T.P. (2003) A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. *Bioinformatics*, **19**, 185–193.
- Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B. and Speed, T.P. (2003) Summaries of Affymetrix GeneChip probe level data. *Nucleic Acids Res.*, **31**, e15.
- Gautier, L., Cope, L., Bolstad, B.M., and Irizarry, R.A. (2004) affy—analysis of Affymetrix GeneChip data at the probe level. *Bioinformatics*, 203, 307–315.
- Smyth, G.K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. *Stat. Appl. Genet. Mol. Biol.*, 2004, 3, Article 3.