65 research outputs found

    Dislocation recovery in fine-grained polycrystalline olivine

    Get PDF
    The rate of static dislocation recovery in Fo90 olivine has been studied under conditions of high temperature and controlled atmosphere in compressively deformed polycrystals hot-pressed from synthetic (sol-gel) and natural (San Carlos) precursor powders. The sol-gel olivine, containing a small fraction of orthopyroxene, was deformed to a final strain of 19% with a maximum differential stress of 266 MPa whereas the San Carlos specimen was deformed to 15% strain and 260 MPa differential stress. Small samples cut from these deformed materials were annealed under high-temperature, controlled atmosphere conditions, for different durations to allow partial recovery of the dislocation sub-structures. Oxidative-decoration of the microstructural features, followed by backscattered electron imaging at 5 kV and image analysis, was used to determine dislocation density. The variation of dislocation density ρ with time t at absolute temperature T was fitted to a second-order rate equation, in integral form, 1/ρ(t) - 1/ρ(0) = kt with k = k0 exp(-Ea/RT). The activation energy Ea of the recovery process is 240 ± 43 and 355 ± 81 kJ mol-1 for sol-gel and San Carlos olivine polycrystals, respectively. The measured rates are one to two orders of magnitude lower than those reported in previous studies on natural single crystal olivine. The difference may be explained by several factors such as high dislocation densities measurable from large areas at high magnification for the SEM and the technique used to estimate dislocation densities. Comparison between fine-grained sol-gel olivine and the coarser-grained San Carlos olivine aggregate did not indicate that grain boundaries play an important role in dislocation recovery, but the absence of grain boundaries might also have contributed to the high dislocation recovery rates previously measured for single crystals

    Thank You to Our 2018 Peer Reviewers

    Get PDF
    AbstractThe editorial and scientific publishing process relies on the sustained work of volunteer reviewers, and evaluating the inter‐disciplinary and broad interest papers published in Geochemistry, Geophysics, Geosystems can be a particular challenge. As editors and associated editors, we are therefore hugely appreciative of the efforts of our reviewers, and would like to thank and acknowledge them in this editorial. G‐Cubed published 271 manuscripts in 2018, and for this we were able to rely on the efforts of 873 dedicated reviewers. A big thank you from the G‐Cubed team

    Allele Summation of Diabetes Risk Genes Predicts Impaired Glucose Tolerance in Female and Obese Individuals

    Get PDF
    INTRODUCTION: Single nucleotide polymorphisms (SNPs) in approximately 40 genes have been associated with an increased risk for type 2 diabetes (T2D) in genome-wide association studies. It is not known whether a similar genetic impact on the risk of prediabetes (impaired glucose tolerance [IGT] or impaired fasting glycemia [IFG]) exists. METHODS: In our cohort of 1442 non-diabetic subjects of European origin (normal glucose tolerance [NGT] n = 1046, isolated IFG n = 142, isolated IGT n = 140, IFG+IGT n = 114), an impact on glucose homeostasis has been shown for 9 SNPs in previous studies in this specific cohort. We analyzed these SNPs (within or in the vicinity of the genes TCF7L2, KCNJ11, HHEX, SLC30A8, WFS1, KCNQ1, MTNR1B, FTO, PPARG) for association with prediabetes. RESULTS: The genetic risk load was significantly associated with the risk for IGT (p = 0.0006) in a model including gender, age, BMI and insulin sensitivity. To further evaluate potential confounding effects, we stratified the population on gender, BMI and insulin sensitivity. The association of the risk score with IGT was present in female participants (p = 0.008), but not in male participants. The risk score was significantly associated with IGT (p = 0.008) in subjects with a body mass index higher than 30 kg/m(2) but not in non-obese individuals. Furthermore, only in insulin resistant subjects a significant association between the genetic load and the risk for IGT (p = 0.01) was found. DISCUSSION: We found that T2D genetic risk alleles cause an increased risk for IGT. This effect was not present in male, lean and insulin sensitive subjects, suggesting a protective role of beneficial environmental factors on the genetic risk

    Association between KCNJ6 (GIRK2) Gene Polymorphisms and Postoperative Analgesic Requirements after Major Abdominal Surgery

    Get PDF
    Opioids are commonly used as effective analgesics for the treatment of acute and chronic pain. However, considerable individual differences have been widely observed in sensitivity to opioid analgesics. We focused on a G-protein-activated inwardly rectifying potassium (GIRK) channel subunit, GIRK2, that is an important molecule in opioid transmission. In our initial polymorphism search, a total of nine single-nucleotide polymorphisms (SNPs) were identified in the whole exon, 5′-flanking, and exon-intron boundary regions of the KCNJ6 gene encoding GIRK2. Among them, G-1250A and A1032G were selected as representative SNPs for further association studies. In an association study of 129 subjects who underwent major open abdominal surgery, the A/A genotype in the A1032G SNP and -1250G/1032A haplotype were significantly associated with increased postoperative analgesic requirements compared with other genotypes and haplotypes. The total dose (mean±SEM) of rescue analgesics converted to equivalent oral morphine doses was 20.45±9.27 mg, 10.84±2.24 mg, and 13.07±2.39 mg for the A/A, A/G, and G/G genotypes in the A1032G SNP, respectively. Additionally, KCNJ6 gene expression levels in the 1032A/A subjects were significantly decreased compared with the 1032A/G and 1032G/G subjects in a real-time quantitative PCR analysis using human brain tissues, suggesting that the 1032A/A subjects required more analgesics because of lower KCNJ6 gene expression levels and consequently insufficient analgesic effects. The results indicate that the A1032G SNP and G-1250A/A1032G haplotype could serve as markers that predict increased analgesic requirements. Our findings will provide valuable information for achieving satisfactory pain control and open new avenues for personalized pain treatment

    Glucose-Raising Genetic Variants in MADD and ADCY5 Impair Conversion of Proinsulin to Insulin

    Get PDF
    Recent meta-analyses of genome-wide association studies revealed new genetic loci associated with fasting glycemia. For several of these loci, the mechanism of action in glucose homeostasis is unclear. The objective of the study was to establish metabolic phenotypes for these genetic variants to deliver clues to their pathomechanism.) and insulin resistance (HOMA-IR, Matsuda-Index) were assessed.. on proinsulin-to-insulin conversion. These effects may also be related to neighboring regions of the genome

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.Peer reviewe

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been
    corecore