21 research outputs found

    Global injury morbidity and mortality from 1990 to 2017 : results from the Global Burden of Disease Study 2017

    Get PDF
    Correction:Background Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries. Methods We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs). Findings In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505). Interpretation Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.Peer reviewe

    Assessment of Water Quality Profile Using Numerical Modeling Approach in Major Climate Classes of Asia

    No full text
    A river water quality spatial profile has a diverse pattern of variation over different climatic regions. To comprehend this phenomenon, our study evaluated the spatial scale variation of the Water Quality Index (WQI). The study was carried out over four main climatic classes in Asia based on the Koppen-Geiger climate classification system: tropical, temperate, cold, and arid. The one-dimensional surface water quality model, QUAL2Kw was selected and compared for water quality simulations. Calibration and validation were separately performed for the model predictions over different climate classes. The accuracy of the water quality model was assessed using different statistical analyses. The spatial profile of WQI was calculated using model predictions based on dissolved oxygen (DO), biological oxygen demand (BOD), nitrate (NO3), and pH. The results showed that there is a smaller longitudinal variation of WQI in the cold climatic regions than other regions, which does not change the status of WQI. Streams from arid, temperate, and tropical climatic regions show a decreasing trend of DO with respect to the longitudinal profiles of main river flows. Since this study found that each climate zone has the different impact on DO dynamics such as reaeration rate, reoxygenation, and oxygen solubility. The outcomes obtained in this study are expected to provide the impetus for developing a strategy for the viable improvement of the water environment

    Precision Nitrogen Management for Cotton Using (GreenSeeker) Handheld Crop Sensors

    No full text
    The precise monitoring of nitrogen (N) is an effective strategy for enhancing the crop yield per unit of land, but it involves field-level soil and crop data. The two years of experimental study were conducted during the cotton growing seasons of 2018 and 2019 at the Agriculture Research Farm of the Department of Agricultural Engineering, Bahauddin Zakariya University, Multan. The Nitrogen Fertilizer Optimization Algorithm (NFOA) was formulated based on the observed data for cotton lint yield (CLY) and GreenSeeker Normalized Difference Vegetation Index (GSNDVI) during the growing stages of cotton. The precision nitrogen application rate-based green seeker (PNAR) G.S for cotton was identified as 150-165 kg/ha. A linear relationship was observed between CLY (R2 = 0.80) for cotton with the GSNDVI. The average nitrogen requirement (Nreq) using (PNAR) G.S was determined through the nitrogen fertilizer optimization algorithm (NFOA). The Nreq was found to be 0.013 kg/kg for cotton. Precision N management originating from handheld crop sensors (GreenSeeker) may be helpful in decision-making for site-specific in-season N fertilizer management to enhance crop yield

    A linear bi-level multi-objective program for optimal allocation of water resources.

    No full text
    This paper presents a simple bi-level multi-objective linear program (BLMOLP) with a hierarchical structure consisting of reservoir managers and several water use sectors under a multi-objective framework for the optimal allocation of limited water resources. Being the upper level decision makers (i.e., leader) in the hierarchy, the reservoir managers control the water allocation system and tend to create a balance among the competing water users thereby maximizing the total benefits to the society. On the other hand, the competing water use sectors, being the lower level decision makers (i.e., followers) in the hierarchy, aim only to maximize individual sectoral benefits. This multi-objective bi-level optimization problem can be solved using the simultaneous compromise constraint (SICCON) technique which creates a compromise between upper and lower level decision makers (DMs), and transforms the multi-objective function into a single decision-making problem. The bi-level model developed in this study has been applied to the Swat River basin in Pakistan for the optimal allocation of water resources among competing water demand sectors and different scenarios have been developed. The application of the model in this study shows that the SICCON is a simple, applicable and feasible approach to solve the BLMOLP problem. Finally, the comparisons of the model results show that the optimization model is practical and efficient when it is applied to different conditions with priorities assigned to various water users

    Regional Groundwater Quality Management through Hydrogeological Modeling in LCC, West Faisalabad, Pakistan

    No full text
    The intensive abstraction of groundwater is causing a number of problems such as groundwater depletion and quality deterioration. To manage such problems, the data of 256 piezometers regarding groundwater levels and quality were acquired for the period of 2003 to 2012 in command area of Lower Chenab Canal (LCC), West Faisalabad, Pakistan. MODFLOW and MT3D models were calibrated for the period of 2003–2007 and validated for years 2008–2012 with respect to observed groundwater levels and quality data, respectively. After the successful calibration and validation, two pumping scenarios were developed up to year 2030: Scenario I (increase in pumping rate according to the historical trend) and Scenario II (adjusted canal water supplies and groundwater patterns). The predicted results of Scenario I revealed that, up to year 2030, the area under good quality groundwater reduced significantly from 50.35 to 28.95%, while marginal and hazardous groundwater quality area increased from 49.65 to 71.06%. Under Scenario II, the good quality groundwater area increased to 6.32% and 12.48% area possesses less hazardous quality of groundwater. It was concluded that the canal water supply should shift from good quality aquifer zone to poor quality aquifer zone for proficient management of groundwater at the study area

    Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan

    No full text
    Land use/land cover (LULC) change has serious implications for environment as LULC is directly related to land degradation over a period of time and results in many changes in the environment. Monitoring the locations and distributions of LULC changes is important for establishing links between regulatory actions, policy decisions, and subsequent LULC activities. The normalized difference vegetation index (NDVI) has the potential ability to identify the vegetation features of various eco-regions and provides valuable information as a remote sensing tool in studying vegetation phenology cycles. Similarly, the normalized difference built-up index (NDBI) may be used for quoting built-up land. This study aims to detect the pattern of LULC, NDBI, and NDVI change in Lodhran district, Pakistan, from the Landsat images taken over 40 years, considering four major LULC types as follows: water bodies, built-up area, bare soil, and vegetation. Supervised classification was applied to detect LULC changes observed over Lodhran district as it explains the maximum likelihood algorithm in software ERDAS imagine 15. Most farmers (46.6%) perceived that there have been extreme changes of onset of temperature, planting season, and less precipitation amount in Lodhran district in the last few years. In 2017, building areas increased (4.3%) as compared to 1977. NDVI values for Lodhran district were highest in 1977 (up to + 0.86) and lowest in 1997 (up to − 0.33). Overall accuracy for classification was 86% for 1977, 85% for 1987, 86% for 1997, 88% for 2007, and 95% for 2017. LULC change with soil types, temperature, and NDVI, NDBI, and slope classes was common in the study area, and the conversions of bare soil into vegetation area and built-up area were major changes in the past 40 years in Lodhran district. Lodhran district faces rising temperatures, less irrigation water, and low rainfall. Farmers are aware of these climatic changes and are adapting strategies to cope with the effects but require support from government

    Study of land cover/land use changes using RS and GIS: a case study of Multan district, Pakistan

    No full text
    Water and land both are limited resources. Current management strategies are facing multiple challenges to meet food security of an increasing population in numerous South Asian countries, including Pakistan. The study of land cover/land use changes (LCLUC) and land surface temperature (LST) is important as both provide critical information for policymaking of natural resources. We spatially examined LCLU and LST changes in district Multan, Pakistan, and its impacts on vegetation cover and water during 1988 to 2017. The LCLUC indicate that rice and sugarcane had less volatility of change in comparison with both cotton and wheat. Producer's accuracy (PA) is the map accuracy (the producer of map), but user's accuracy (UA) is the accuracy from the point of view of a map user, not the map maker. Average overall producer's and user's accuracy for the region was 85.7% and 87.7% for Rabi (winter) and Kharif (summer) seasons, respectively. The results of this study showed that 'built-up area' increased with 7.2% of all the classes during 1988 to 2017 in the Multan district. Anthropogenic activities decreased the vegetation, leading to an increase in LST in study area. Changes on LCLU and LST during the last 30 years have shown that vegetation pattern has changed and temperature has increased in the Multan district
    corecore