9 research outputs found

    Polarized Intensity Ratio Constraint Demosaicing for the Division of a Focal-Plane Polarimetric Image

    No full text
    Polarization is an independent dimension of light wave information that has broad application prospects in machine vision and remote sensing tasks. Polarization imaging using a division-of-focal-plane (DoFP) polarimetric sensor can meet lightweight and real-time application requirements. Similar to Bayer filter-based color imaging, demosaicing is a basic and important processing step in DoFP polarization imaging. Due to the differences in the physical properties of polarization and the color of light waves, the widely studied color demosaicing method cannot be directly applied to polarization demosaicing. We propose a polarized intensity ratio constraint demosaicing model to efficiently account for the characteristics of polarization detection in this work. First, we discuss the special constraint relationship between the polarization channels. It can be simply described as: for a beam of light, the sum of the intensities detected by any two vertical ideal analyzers should be equal to the total light intensity. Then, based on this constraint relationship and drawing on the concept of guided filtering, a new polarization demosaicing method is developed. A method to directly use raw images captured by the DoFP detector as the ground truth for comparison experiments is then constructed to aid in the convenient collection of experimental data and extensive image scenarios. Results of both qualitative and quantitative experiments illustrate that our method is an effective and practical method to faithfully recover the full polarization information of each pixel from a single mosaic input image

    Polarized Intensity Ratio Constraint Demosaicing for the Division of a Focal-Plane Polarimetric Image

    No full text
    Polarization is an independent dimension of light wave information that has broad application prospects in machine vision and remote sensing tasks. Polarization imaging using a division-of-focal-plane (DoFP) polarimetric sensor can meet lightweight and real-time application requirements. Similar to Bayer filter-based color imaging, demosaicing is a basic and important processing step in DoFP polarization imaging. Due to the differences in the physical properties of polarization and the color of light waves, the widely studied color demosaicing method cannot be directly applied to polarization demosaicing. We propose a polarized intensity ratio constraint demosaicing model to efficiently account for the characteristics of polarization detection in this work. First, we discuss the special constraint relationship between the polarization channels. It can be simply described as: for a beam of light, the sum of the intensities detected by any two vertical ideal analyzers should be equal to the total light intensity. Then, based on this constraint relationship and drawing on the concept of guided filtering, a new polarization demosaicing method is developed. A method to directly use raw images captured by the DoFP detector as the ground truth for comparison experiments is then constructed to aid in the convenient collection of experimental data and extensive image scenarios. Results of both qualitative and quantitative experiments illustrate that our method is an effective and practical method to faithfully recover the full polarization information of each pixel from a single mosaic input image

    Strophanthidin Induces Apoptosis of Human Lung Adenocarcinoma Cells by Promoting TRAIL-DR5 Signaling

    No full text
    Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment

    Fouling in membrane bioreactors: An updated review

    No full text
    corecore