248 research outputs found

    Innate immunity and monocyte-macrophage activation in atherosclerosis

    Get PDF
    Innate inflammation is a hallmark of both experimental and human atherosclerosis. The predominant innate immune cell in the atherosclerotic plaque is the monocyte-macrophage. The behaviour of this cell type within the plaque is heterogeneous and depends on the recruitment of diverse monocyte subsets. Furthermore, the plaque microenvironment offers polarisation and activation signals which impact on phenotype. Microenvironmental signals are sensed through pattern recognition receptors, including toll-like and NOD-like receptors - the latter of which are components of the inflammasome - thus dictating macrophage behaviour and outcome in atherosclerosis. Recently cholesterol crystals and modified lipoproteins have been recognised as able to directly engage these pattern recognition receptors. The convergent role of such pathways in terms of macrophage activation is discussed in this review

    <i>mi</i>R-625-3<i>p</i> regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells

    Get PDF
    Oxaliplatin resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Herein, we show that miR-625-3p functionally induces oxaliplatin resistance in CRC cells, and identify the signalling networks affected by miR-625-3p. We show that the p38 MAPK activator MAP2K6 is a direct target of miR-625-3p, and, accordingly, is downregulated in non-responder patients of oxaliplatin therapy. miR-625-3p-mediated resistance is reversed by anti-miR-625-3p treatment and ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, reduction of p38 signalling by using siRNAs, chemical inhibitors or expression of a dominant-negative MAP2K6 protein induces resistance to oxaliplatin. Transcriptome, proteome and phosphoproteome profiles confirm inactivation of MAP2K6-p38 signalling as one likely mechanism of oxaliplatin resistance. Our study shows that miR-625-3p induces oxaliplatin resistance by abrogating MAP2K6-p38-regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p

    Distribution of <i>RET</i> Mutations in Multiple Endocrine Neoplasia 2 in Denmark 1994-2014:A Nationwide Study

    Get PDF
    Background: Germline mutations of the REarranged during Transfection (RET) proto-oncogene cause multiple endocrine neoplasia 2 (MEN2). It is unclear whether the distribution of RET mutations varies among populations. The first nationwide study of the distribution of RET mutations was conducted, and the results were compared to those of other populations. Methods: This retrospective cohort study included 1583 patients who underwent RET gene testing in one of three centers covering all of Denmark between September 1994 and December 2014. Primary testing method was Sanger sequencing, which included exons 8–11 and 13–16. Mutations were defined according to the ARUP database July 1, 2016. Results: RET mutations were identified in 163 patients from 36 apparently unrelated families. Among the 36 families 13 (36.1%) carried mutations in codon 611, four (11.1%) in codon 618, three (8.3%) in codon 620, one (2.8%) in codon 631, six (16.7%) in codon 634, one (2.8%) in codon 790, one (2.8%) in codon 804, one (2.8%) in codon 852, one (2.8%) in codon 883, and five (13.9%) in codon 918. Among the 13 families with codon 611 mutations, 12 had the p.C611Y mutation. Conclusions: The distribution of RET mutations in Denmark appears to differ from that of other populations. Mutations in codon 611 were the most prevalent, followed by more frequently reported mutations. This might be due to a possible founder effect for the p.C611Y mutation. However, further studies are needed to find possible explanations for the skewed mutational spectrum in Denmark

    Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids

    Full text link
    In this review, we describe and analyze a mesoscale simulation method for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of alternating streaming and collision steps in an ensemble of point particles. The multi-particle collisions are performed by grouping particles in collision cells, and mass, momentum, and energy are locally conserved. This simulation technique captures both full hydrodynamic interactions and thermal fluctuations. The first part of the review begins with a description of several widely used MPC algorithms and then discusses important features of the original SRD algorithm and frequently used variations. Two complementary approaches for deriving the hydrodynamic equations and evaluating the transport coefficients are reviewed. It is then shown how MPC algorithms can be generalized to model non-ideal fluids, and binary mixtures with a consolute point. The importance of angular-momentum conservation for systems like phase-separated liquids with different viscosities is discussed. The second part of the review describes a number of recent applications of MPC algorithms to study colloid and polymer dynamics, the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of viscoelastic fluids

    Cortical activation to action perception is associated with action production abilities in young infants

    Get PDF
    The extent to which perception and action share common neural processes is much debated in cognitive neuroscience. Taking a developmental approach to this issue allows us to assess whether perceptual processing develops in close association with the emergence of related action skills within the same individual. The current study used functional near-infrared spectroscopy (fNIRS) to investigate the perception of human action in 4- to 6-month-old human infants. In addition, the infants' manual dexterity was assessed using the fine motor component of The Mullen Scales of Early Learning and an in-house developed Manual Dexterity task. Results show that the degree of cortical activation, within the posterior superior temporal sulcus—temporoparietal junction (pSTS-TPJ) region, to the perception of manual actions in individual infants correlates with their own level of fine motor skills. This association was not fully explained by either measures of global attention (i.e., looking time) or general developmental stage. This striking concordance between the emergence of motor skills and related perceptual processing within individuals is consistent with experience-related cortical specialization in the developing brain

    Synchronization in G0/G1 enhances the mitogenic response of cells overexpressing the human insulin receptor A isoform to insulin

    Get PDF
    Evaluating mitogenic signaling specifically through the human insulin receptor (IR) is relevant for the preclinical safety assessment of developmental insulin analogs. It is known that overexpression of IR sensitizes cells to the mitogenic effects of insulin, but it is essentially unknown how mitogenic responses can be optimized to allow practical use of such recombinant cell lines for preclinical safety testing. We constitutively overexpressed the short isoform of the human insulin receptor (hIR-A, exon 11-negative) in L6 rat skeletal myoblasts. Because the mitogenic effect of growth factors such as insulin is expected to act in G0/G1, promoting S-phase entry, we developed a combined topoinhibition + serum deprivation strategy to explore the effect of G0/G1 synchronization as an independent parameter in the context of serum deprivation, the latter being routinely used to reduce background in mitogenicity assays. G0/G1 synchronization significantly improved the mitogenic responses of L6-hIR cells to insulin, measured by 3H-thymidine incorporation. Comparison with the parental L6 cells using phospho-mitogen-activated protein kinase, phospho-AKT, as well as 3H-thymidine incorporation end points supported that the majority of the mitogenic effect of insulin in L6-hIR cells was mediated by the overexpressed hIR-A. Using the optimized L6-hIR assay, we found that the X-10 insulin analog was more mitogenic than native human insulin, supporting that X-10 exhibits increased mitogenic signaling through the hIR-A. In summary, this study provides the first demonstration that serum deprivation may not be sufficient, and G0/G1 synchronization may be required to obtain optimal responsiveness of hIR-overexpressing cell lines for preclinical safety testing

    Non-Redfield carbon and nitrogen cycling in the Arctic: Effects of ecosystem structure and dynamics

    Get PDF
    The C:N ratio is a critical parameter used in both global ocean carbon models and field studies to understand carbon and nutrient cycling as well as to estimate exported carbon from the euphotic zone. The so-called Redfield ratio (C:N = 6.6 by atoms) [Redfield et al., 1963] is widely used for such calculations. Here we present data from the NE Greenland continental shelf that show that most of the C:N ratios for particulate (autotrophic and heterotrophic) and dissolved pools and rates of transformation among them exceed Redfield proportions from June to August, owing to species composition, size, and biological interactions. The ecosystem components that likely comprised sinking particles and had relatively high C:N ratios (geometric means) included (1) the particulate organic matter (C:N = 8.9) dominated by nutrient-deficient diatoms, resulting from low initial nitrate concentrations (approximately 4 μM) in Arctic surface waters; (2) the dominant zooplankton, herbivorous copepods (C:N = 9.6), having lipid storage typical of Arctic copepods; and (3) copepod fecal pellets (C:N = 33.2). Relatively high dissolved organic carbon concentrations (median 105 μM) were approximately 25 to 45 μM higher than reported for other systems and may be broadly characteristic of Arctic waters. A carbon-rich dissolved organic carbon pool also was generated during summer. Since the magnitude of carbon and nitrogen uncoupling in the surface mixed layer appeared to be greater than in other regions and occurred throughout the productive season, the C:N ratio of particulate organic matter may be a better conversion factor than the Redfield ratio to estimate carbon export for broad application in northern high-latitude systems

    Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes

    Get PDF
    Fluorescence correlation spectroscopy (FCS) is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support
    corecore