204 research outputs found

    Neutron Moderation in the Oklo Natural Reactor and the Time Variation of alpha

    Full text link
    In the analysis of the Oklo (gabon) natural reactor to test for a possible time variation of the fine structure constant alpha, a Maxwell-Boltzmann low energy neutron spectrum was assumed. We present here an analysis where a more realistic spectrum is employed and show that the most recent isotopic analysis of samples implies a non-zero change in alpha, over the last two billion years since the reactor was operating, of \Delta\alpha/\alpha\geq 4.5\times 10^{-8} (6\sigma confidence). Issues regarding the interpretation of the shifts of the low energy neutron resonances are discussed.Comment: 7 pages, 4 figures; version 2 included reference to Flambaum/Shuryak work and corrects error in abstract version three corrects a few points and adds discussion on hydrogen and impurity concentration

    Limits on Cosmological Variation of Strong Interaction and Quark Masses from Big Bang Nucleosynthesis, Cosmic, Laboratory and Oklo Data

    Get PDF
    Recent data on cosmological variation of the electromagnetic fine structure constant from distant quasar (QSO) absorption spectra have inspired a more general discussion of possible variation of other constants. We discuss variation of strong scale and quark masses. We derive the limits on their relative change from (i) primordial Big-Bang Nucleosynthesis (BBN); (ii) Oklo natural nuclear reactor, (iii) quasar absorption spectra, and (iv) laboratory measurements of hyperfine intervals.Comment: 10 pages 2 figurs: second version have several references added and some new comment

    Measuring α\alpha in the Early Universe: CMB Temperature, Large-Scale Structure and Fisher Matrix Analysis

    Full text link
    We extend our recent work on the effects of a time-varying fine-structure constant α\alpha in the cosmic microwave background, by providing a thorough analysis of the degeneracies between α\alpha and the other cosmological parameters, and discussing ways to break these with both existing and/or forthcoming data. In particular, we present the state-of-the-art CMB constraints on α\alpha, through a combined analysis of the BOOMERanG, MAXIMA and DASI datasets. We also present a novel discussion of the constraints on α\alpha coming from large-scale structure observations, focusing in particular on the power spectrum from the 2dF survey. Our results are consistent with no variation in α\alpha from the epoch of recombination to the present day, and restrict any such (relative) variation to be less than about 4%. We show that the forthcoming MAP and (particularly) Planck experiments will be able to break most of the currently existing degeneracies between α\alpha and other parameters, and measure α\alpha to better than percent accuracy.Comment: 11 pages in RevTex4 format. Low-quality figures to comply with arXiv restrictions (better ones available from the authors). v2: Updated Oklo discussion, plus other cosmetic changes. Version to appear in Phys Rev

    Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha

    Full text link
    We study the change of the effective fine structure constant in the cosmological models of a scalar field with a non-vanishing coupling to the electromagnetic field. Combining cosmological data and terrestrial observations we place empirical constraints on the size of the possible coupling and explore a large class of models that exhibit tracking behavior. The change of the fine structure constant implied by the quasar absorption spectra together with the requirement of tracking behavior impose a lower bound of the size of this coupling. Furthermore, the transition to the quintessence regime implies a narrow window for this coupling around 10−510^{-5} in units of the inverse Planck mass. We also propose a non-minimal coupling between electromagnetism and quintessence which has the effect of leading only to changes of alpha determined from atomic physics phenomena, but leaving no observable consequences through nuclear physics effects. In doing so we are able to reconcile the claimed cosmological evidence for a changing fine structure constant with the tight constraints emerging from the Oklo natural nuclear reactor.Comment: 13 pages, 10 figures, RevTex, new references adde

    Pion photoproduction on the nucleon in the quark model

    Get PDF
    We present a detailed quark-model study of pion photoproduction within the effective Lagrangian approach. Cross sections and single-polarization observables are investigated for the four charge channels, Îłp→π+n\gamma p\to \pi^+ n, Îłn→π−p\gamma n\to \pi^- p, Îłp→π0p\gamma p\to \pi^0 p, and Îłn→π0n\gamma n\to \pi^0 n. Leaving the πNΔ\pi N\Delta coupling strength to be a free parameter, we obtain a reasonably consistent description of these four channels from threshold to the first resonance region. Within this effective Lagrangian approach, strongly constrainted by the quark model, we consider the issue of double-counting which may occur if additional {\it t}-channel contributions are included.Comment: Revtex, 35 pages, 16 eps figures; version to appear on PR

    Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg⁡(E/eV)=18.5−19.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore